Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Genome Res ; 33(10): 1848-1864, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37751945

RESUMO

We report the generation of an organism-wide catalog of 976,813 cis-acting regulatory elements for the bovine detected by the assay for transposase accessible chromatin using sequencing (ATAC-seq). We regroup these regulatory elements in 16 components by nonnegative matrix factorization. Correlation between the genome-wide density of peaks and transcription start sites, correlation between peak accessibility and expression of neighboring genes, and enrichment in transcription factor binding motifs support their regulatory potential. Using a previously established catalog of 12,736,643 variants, we show that the proportion of single-nucleotide polymorphisms mapping to ATAC-seq peaks is higher than expected and that this is owing to an approximately 1.3-fold higher mutation rate within peaks. Their site frequency spectrum indicates that variants in ATAC-seq peaks are subject to purifying selection. We generate eQTL data sets for liver and blood and show that variants that drive eQTL fall into liver- and blood-specific ATAC-seq peaks more often than expected by chance. We combine ATAC-seq and eQTL data to estimate that the proportion of regulatory variants mapping to ATAC-seq peaks is approximately one in three and that the proportion of variants mapping to ATAC-seq peaks that are regulatory is approximately one in 25. We discuss the implication of these findings on the utility of ATAC-seq information to improve the accuracy of genomic selection.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , Sequenciamento de Nucleotídeos em Larga Escala , Animais , Bovinos/genética , Análise de Sequência de DNA , Cromatina/genética , Sequências Reguladoras de Ácido Nucleico
2.
Int J Mol Sci ; 24(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37373054

RESUMO

Cows can live for over 20 years, but their productive lifespan averages only around 3 years after first calving. Liver dysfunction can reduce lifespan by increasing the risk of metabolic and infectious disease. This study investigated the changes in hepatic global transcriptomic profiles in early lactation Holstein cows in different lactations. Cows from five herds were grouped as primiparous (lactation number 1, PP, 534.7 ± 6.9 kg, n = 41), or multiparous with lactation numbers 2-3 (MP2-3, 634.5 ± 7.5 kg, n = 87) or 4-7 (MP4-7, 686.6 ± 11.4 kg, n = 40). Liver biopsies were collected at around 14 days after calving for RNA sequencing. Blood metabolites and milk yields were measured, and energy balance was calculated. There were extensive differences in hepatic gene expression between MP and PP cows, with 568 differentially expressed genes (DEGs) between MP2-3 and PP cows, and 719 DEGs between MP4-7 and PP cows, with downregulated DEGs predominating in MP cows. The differences between the two age groups of MP cows were moderate (82 DEGs). The gene expression differences suggested that MP cows had reduced immune functions compared with the PP cows. MP cows had increased gluconeogenesis but also evidence of impaired liver functionality. The MP cows had dysregulated protein synthesis and glycerophospholipid metabolism, and impaired genome and RNA stability and nutrient transport (22 differentially expressed solute carrier transporters). The genes associated with cell cycle arrest, apoptosis, and the production of antimicrobial peptides were upregulated. More surprisingly, evidence of hepatic inflammation leading to fibrosis was present in the primiparous cows as they started their first lactation. This study has therefore shown that the ageing process in the livers of dairy cows is accelerated by successive lactations and increasing milk yields. This was associated with evidence of metabolic and immune disorders together with hepatic dysfunction. These problems are likely to increase involuntary culling, thus reducing the average longevity in dairy herds.


Assuntos
Lactação , Transcriptoma , Gravidez , Feminino , Bovinos , Animais , Paridade , Lactação/genética , Leite/metabolismo , Fígado/metabolismo
3.
Int J Mol Sci ; 24(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36613482

RESUMO

The functionality of circulating leukocytes in dairy cows is suppressed after calving, with negative energy balance as a risk factor. Leukocyte transcriptomic profiles were compared separately in 44 multiparous (MP) and 18 primiparous (PP) Holstein-Friesian cows receiving diets differing in concentrate proportion to test whether immune dysfunction could be mitigated by appropriate nutrition. After calving, cows were offered either (1) low concentrate (LC); (2) medium concentrate (MC) or (3) high concentrate (HC) diets with proportions of concentrate to grass silage of 30%:70%, 50%:50% and 70%:30%, respectively. Cow phenotype data collected included circulating metabolites, milk yield and health and fertility records. RNA sequencing of circulating leukocytes at 14 days in milk was performed. The HC diet improved energy balance in both age groups. There were more differentially expressed genes in PP than MP cows (460 vs. 173, HC vs. LC comparison) with few overlaps. The MP cows on the LC diet showed upregulation of the complement and coagulation cascade and innate immune defence mechanisms against pathogens and had a trend of more cases of mastitis and poorer fertility. In contrast, the PP cows on the HC diet showed greater immune responses based on both gene expression and phenotypic data and longer interval of calving to conception. The leukocytes of MP and PP cows therefore responded differentially to the diets between age, nutrient supply and immunity affecting their health and subsequent fertility.


Assuntos
Lactação , Transcriptoma , Gravidez , Feminino , Bovinos , Animais , Paridade , Lactação/fisiologia , Dieta/veterinária , Leite/metabolismo , Fertilidade , Leucócitos
4.
BMC Genomics ; 22(1): 693, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34563126

RESUMO

BACKGROUND: Previous studies have identified many immune pathways which are consistently altered in humans and model organisms as they age. Dairy cows are often culled at quite young ages due to an inability to cope adequately with metabolic and infectious diseases, resulting in reduced milk production and infertility. Improved longevity is therefore a desirable trait which would benefit both farmers and their cows. This study analysed the transcriptome derived from RNA-seq data of leukocytes obtained from Holstein cows in early lactation with respect to lactation number. RESULTS: Samples were divided into three lactation groups for analysis: i) primiparous (PP, n = 53), ii) multiparous in lactations 2-3 (MP 2-3, n = 121), and iii) MP in lactations 4-7 (MP > 3, n = 55). Leukocyte expression was compared between PP vs MP > 3 cows with MP 2-3 as background using DESeq2 followed by weighted gene co-expression network analysis (WGCNA). Seven modules were significantly correlated (r ≥ 0.25) to the trait lactation number. Genes from the modules which were more highly expressed in either the PP or MP > 3 cows were pooled, and the gene lists subjected to David functional annotation cluster analysis. The top three clusters from modules more highly expressed in the PP cows all involved regulation of gene transcription, particularly zinc fingers. Another cluster included genes encoding enzymes in the mitochondrial beta-oxidation pathway. Top clusters up-regulated in MP > 3 cows included the terms Glycolysis/Gluconeogenesis, C-type lectin, and Immunity. Differentially expressed candidate genes for ageing previously identified in the human blood transcriptome up-regulated in PP cows were mainly associated with T-cell function (CCR7, CD27, IL7R, CAMK4, CD28), mitochondrial ribosomal proteins (MRPS27, MRPS9, MRPS31), and DNA replication and repair (WRN). Those up-regulated in MP > 3 cows encoded immune defence proteins (LYZ, CTSZ, SREBF1, GRN, ANXA5, ADARB1). CONCLUSIONS: Genes and pathways associated with lactation number in cows were identified for the first time to date, and we found that many were comparable to those known to be associated with ageing in humans and model organisms. We also detected changes in energy utilization and immune responses in leukocytes from older cows.


Assuntos
Doenças dos Bovinos , Leite , Adenosina Desaminase , Animais , Bovinos , Feminino , Humanos , Lactação , Leucócitos , Proteínas de Ligação a RNA , Transcriptoma
5.
Mol Biol Rep ; 48(5): 4611-4623, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34146201

RESUMO

Bovine mastitis, an inflammatory disease of the mammary gland, is classified as subclinical or clinical. Circulating neutrophils are recruited to the udder to combat infection. We compared the transcriptomic profiles in circulating leukocytes between healthy cows and those with naturally occurring subclinical or clinical mastitis. Holstein Friesian dairy cows from six farms in EU countries were recruited. Based on milk somatic cell count and clinical records, cows were classified as healthy (n = 147), subclinically (n = 45) or clinically mastitic (n = 22). Circulating leukocyte RNA was sequenced with Illumina NextSeq single end reads (30 M). Differentially expressed genes (DEGs) between the groups were identified using CLC Genomics Workbench V21, followed by GO enrichment analysis. Both subclinical and clinical mastitis caused significant changes in the leukocyte transcriptome, with more intensive changes attributed to clinical mastitis. We detected 769 DEGs between clinical and healthy groups, 258 DEGs between subclinical and healthy groups and 193 DEGs between clinical and subclinical groups. Most DEGs were associated with cell killing and immune processes. Many upregulated DEGs in clinical mastitis encoded antimicrobial peptides (AZU1, BCL3, CAMP, CATHL1, CATHL2, CATHL4,CATHL5, CATHL6, CCL1, CXCL2, CXCL13, DEFB1, DEFB10, DEFB4A, DEFB7, LCN2, PGLYRP1, PRTN3, PTX3, S100A8, S100A9, S100A12, SLC11A1, TF and LTF) which were not upregulated in subclinical mastitis. The use of transcriptomic profiles has identified a much greater up-regulation of genes encoding antimicrobial peptides in circulating leukocytes of cows with naturally occurring clinical compared with subclinical mastitis. These could play a key role in combatting disease organisms.


Assuntos
Peptídeos Antimicrobianos/genética , Lactação/genética , Mastite Bovina/genética , Transcriptoma/genética , Animais , Peptídeos Antimicrobianos/classificação , Peptídeos Antimicrobianos/isolamento & purificação , Bovinos , Contagem de Células , Feminino , Regulação da Expressão Gênica/genética , Mastite Bovina/metabolismo , Mastite Bovina/microbiologia , Mastite Bovina/patologia , Leite/citologia , Leite/metabolismo
6.
Biol Reprod ; 96(6): 1142-1153, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28605413

RESUMO

Bovine viral diarrhea virus (BVDV) can evade host detection by downregulation of interferon signaling pathways. Infection of cows with noncytopathic (ncp) BVDV can cause early embryonic mortality. Upregulation of type I interferon stimulated genes (ISGs) by blastocyst-secreted interferon tau (IFNT) is a crucial component of the maternal recognition of pregnancy (MRP) in ruminants. This study investigated the potential of acute BVDV infection to disrupt MRP by modulating endometrial ISG expression. Endometrial cells from 10 BVDV-free cows were cultured and treated with 0 or 100 ng/ml IFNT for 24 h in the absence or presence of ncpBVDV infection to yield four treatment groups: CONT, ncpBVDV, IFNT, or ncpBVDV+IFNT. ncpBVDV infection alone only upregulated TRIM56, but reduced mRNA expression of ISG15, MX2, BST2, and the proinflammatory cytokine IL1B. As anticipated, IFNT treatment alone significantly increased expression of all 17 ISGs tested. In contrast to the limited effect of ncpBVDV alone, the virus markedly inhibited IFNT-stimulated expression of 15 ISGs tested (ISG15, HERC5, USP18, DDX58, IFIH1, IFIT1, IFIT3, BST2, MX1, MX2, RSAD2, OAS1Y, SAMD9, GBP4, and PLAC8), together with ISG15 secreted protein. Only TRIM56 and IFI27 expression was unaltered. IL1B expression was reduced by the combined treatment. These results indicate that acute ncpBVDV infection may decrease uterine immunity and lead to MRP failure through inhibition of IFNT-stimulated endometrial ISG production. This in turn could reduce fertility and predispose cows to uterine disease, while evasion of the normal uterine immune response by ncpBVDV may contribute to maintenance and spreading of this economically important disease.


Assuntos
Vírus da Diarreia Viral Bovina/fisiologia , Endométrio/metabolismo , Regulação da Expressão Gênica/fisiologia , Interferon Tipo I/metabolismo , Proteínas da Gravidez/metabolismo , Animais , Bovinos , Endométrio/virologia , Feminino , Interferon Tipo I/genética , Proteínas da Gravidez/genética
7.
Reproduction ; 151(6): 605-14, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26952097

RESUMO

Embryonic mortality in cows is at least in part caused by failure of pregnancy recognition (PR). Evidence has shown that bovine viral diarrhoea virus (BVDV) infection can disrupt pregnancy. Prostaglandins (PG) play important roles in many reproductive processes, such as implantation. The aim of this study was to investigate the effect of BVDV infection on uterine PG production and PR using an in vitro PR model. Bovine uterine endometrial cells isolated from ten BVDV-free cows were cultured and treated with 0 or 100ng/mL interferon-τ (IFNT) in the absence or presence of non-cytopathic BVDV (ncpBVDV). PGF2α and PGE2 concentrations in the spent medium were measured using radioimmunoassays, and in the treated cells expression of the genes associated with PG production and signalling was quantified using qPCR. The results showed that the IFNT challenge significantly stimulated PTGS1 and PTGER3 mRNA expression and PGE2 production; however, these stimulatory effects were neutralised in the presence of ncpBVDV infection. ncpBVDV infection significantly increased PTGS1 and mPGES1 mRNA expression and decreased AKR1B1 expression, leading to increased PGE2 and decreased PGF2α concentrations and an increased PGE2:PGF2α ratio. The other tested genes, including PGR, ESR1, OXTR, PTGS2, PTGER2 and PTGFR, were not significantly altered by IFNT, ncpBVDV or their combination. Our study suggests that BVDV infection may impair PR by (1) inhibiting the effect of IFNT on uterine PG production and (2) inducing an endocrine switch of PG production from PGF2α to PGE2 to decrease uterine immunity, thereby predisposing the animals to uterine disease.


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina/virologia , Vírus da Diarreia Viral Bovina Tipo 1/patogenicidade , Endométrio/metabolismo , Interferons/farmacologia , Prenhez , Prostaglandinas/metabolismo , Animais , Antivirais/farmacologia , Doença das Mucosas por Vírus da Diarreia Viral Bovina/tratamento farmacológico , Bovinos , Endométrio/efeitos dos fármacos , Endométrio/virologia , Feminino , Gravidez
8.
Biol Reprod ; 93(4): 100, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26353891

RESUMO

The dysregulation of endometrial immune response to bacterial lipopolysaccharide (LPS) has been implicated in uterine disease and infertility in the postpartum dairy cow, although the mechanisms are not clear. Here, we investigated whole-transcriptomic gene expression in primary cultures of mixed bovine epithelial and stromal endometrial cells. Cultures were exposed to LPS for 6 h, and cellular response was measured by bovine microarray. Approximately 30% of the 1006 genes altered by LPS were classified as being involved in immune response. Cytokines and chemokines (IL1A, CX3CL1, CXCL2, and CCL5), interferon (IFN)-stimulated genes (RSAD2, MX2, OAS1, ISG15, and BST2), and the acute phase molecule SAA3 were the most up-regulated genes. Ingenuity Pathway Analysis identified up-regulation of many inflammatory cytokines and chemokines, which function to attract immune cells to the endometrium, together with vascular adhesion molecules and matrix metalloproteinases, which can facilitate immune cell migration from the tissue toward the uterine lumen. Increased expression of many IFN-signaling genes, immunoproteasomes, guanylate-binding proteins, and genes involved in the intracellular recognition of pathogens suggests important roles for these molecules in the innate defense against bacterial infections. Our findings confirmed the important role of endometrial cells in uterine innate immunity, whereas the global approach used identified several novel immune response pathways triggered by LPS in the endometrium. Additionally, many genes involved in endometrial response to the conceptus in early pregnancy were also altered by LPS, suggesting one mechanism whereby an ongoing response to infection may interfere with the establishment of pregnancy.


Assuntos
Endométrio/imunologia , Perfilação da Expressão Gênica , Imunidade Inata/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Proteínas de Fase Aguda/biossíntese , Proteínas de Fase Aguda/genética , Animais , Bovinos , Moléculas de Adesão Celular/biossíntese , Moléculas de Adesão Celular/genética , Sobrevivência Celular , Células Cultivadas , Quimiocinas/biossíntese , Quimiocinas/genética , Citocinas/biossíntese , Citocinas/genética , Endométrio/efeitos dos fármacos , Feminino , Redes Reguladoras de Genes/genética , Gravidez
9.
Biol Reprod ; 93(4): 101, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26353892

RESUMO

Infection with noncytopathic bovine viral diarrhea virus (ncpBVDV) is associated with uterine disease and infertility. This study investigated the influence of ncpBVDV on immune functions of the bovine endometrium by testing the response to bacterial lipopolysaccharide (LPS). Primary cultures of mixed epithelial and stromal cells were divided into four treatment groups (control [CONT], BVDV, CONT+LPS, and BVDV+LPS) and infected with ncpBVDV for 4 days followed by treatment with LPS for 6 h. Whole-transcriptomic gene expression was measured followed by Ingenuity Pathway Analysis. Differential expression of 184 genes was found between CONT and BVDV treatments, showing interplay between induction and inhibition of responses. Up-regulation of TLR3, complement, and chemotactic and TRIM factors by ncpBVDV all suggested an ongoing immune response to viral infection. Down-regulation of inflammatory cytokines, chemokines, CXCR4, and serine proteinase inhibitors suggested mechanisms by which ncpBVDV may simultaneously counter the host response. Comparison between BVDV+LPS and CONT+LPS treatments showed 218 differentially expressed genes. Canonical pathway analysis identified the key importance of interferon signaling. Top down-regulated genes were RSAD2, ISG15, BST2, MX2, OAS1, USP18, IFIT3, IFI27, SAMD9, IFIT1, and DDX58, whereas TRIM56, C3, and OLFML1 were most up-regulated. Many of these genes are also regulated by IFNT during maternal recognition of pregnancy. Many innate immune genes that typically respond to LPS were inhibited by ncpBVDV, including those involved in pathogen recognition, inflammation, interferon response, chemokines, tissue remodeling, cell migration, and cell death/survival. Infection with ncpBVDV can thus compromise immune function and pregnancy recognition, thereby potentially predisposing infected cows to postpartum bacterial endometritis and reduced fertility.


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina/imunologia , Vírus da Diarreia Viral Bovina , Endométrio/imunologia , Perfilação da Expressão Gênica , Lipopolissacarídeos/farmacologia , Animais , Bovinos , Endométrio/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Redes Reguladoras de Genes/genética , Imunidade Inata/genética , Gravidez , Cultura Primária de Células , Células Estromais/efeitos dos fármacos , Células Estromais/imunologia , Doenças Uterinas/genética , Doenças Uterinas/imunologia
10.
Reproduction ; 145(5): 527-39, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23533291

RESUMO

Uterine inflammation occurs after calving in association with extensive endometrial remodelling and bacterial contamination. If the inflammation persists, it leads to reduced fertility. Chronic endometritis is highly prevalent in high-yielding cows that experience negative energy balance (NEB) in early lactation. This study investigated the effect of NEB on the antimicrobial peptides S100A8 and S100A9 in involuting uteri collected 2 weeks post partum. Holstein-Friesian cows (six per treatment) were randomly allocated to two interventions designed to produce mild or severe NEB (MNEB and SNEB) status. Endometrial samples were examined histologically, and the presence of neutrophils, macrophages, lymphocytes and natural killer cells was confirmed using haematoxylin and eosin and immunostaining. SNEB cows had greater signs of uterine inflammation. Samples of previously gravid uterine horn were used to localise S100A8 and S100A9 by immunohistochemistry. Both S100 proteins were present in bovine endometrium with strong staining in epithelial and stromal cells and in infiltrated leucocytes. Immunostaining was significantly higher in SNEB cows along with increased numbers of segmented neutrophils. These results suggest that the metabolic changes of a post-partum cow suffering from NEB delay uterine involution and promote a chronic state of inflammation. We show that upregulation of S100A8 and S100A9 is clearly a key component of the early endometrial response to uterine infection. Further studies are warranted to link the extent of this response after calving to the likelihood of cows developing endometritis and to their subsequent fertility.


Assuntos
Calgranulina A/metabolismo , Calgranulina B/metabolismo , Restrição Calórica/veterinária , Doenças dos Bovinos/etiologia , Endometrite/veterinária , Endométrio/imunologia , Regulação da Expressão Gênica , Animais , Animais Endogâmicos , Calgranulina A/genética , Calgranulina B/genética , Restrição Calórica/efeitos adversos , Bovinos , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/patologia , Doenças dos Bovinos/fisiopatologia , Endometrite/etiologia , Endometrite/imunologia , Endometrite/patologia , Endométrio/patologia , Feminino , Imuno-Histoquímica/veterinária , Linfócitos/imunologia , Linfócitos/metabolismo , Linfócitos/patologia , Macrófagos/imunologia , Macrófagos/patologia , Neutrófilos/imunologia , Neutrófilos/patologia , Período Pós-Parto , RNA Mensageiro/metabolismo , Distribuição Aleatória , Índice de Gravidade de Doença , Análise Serial de Tecidos/veterinária
11.
Mol Biol Rep ; 40(2): 743-50, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23232712

RESUMO

Cattle and water buffalo belong to the same subfamily Bovinae and share chromosome banding and gene order homology. In this study, we used genome-wide Illumina BovineSNP50 BeadChip to analyze 91 DNA samples from three breeds of water buffalo (Nili-Ravi, Murrah and their crossbred with local GuangXi buffalos in China), to demonstrate the genetic divergence between cattle and water buffalo through a large single nucleotide polymorphism (SNP) transferability study at the whole genome level, and performed association analysis of functional traits in water buffalo as well. A total of 40,766 (75.5 %) bovine SNPs were found in the water buffalo genome, but 49,936 (92.5 %) were with only one allele, and finally 935 were identified to be polymorphic and useful for association analysis in water buffalo. Therefore, the genome sequences of water buffalo and cattle shared a high level of homology but the polymorphic status of the bovine SNPs varied between these two species. The different patterns of mutations between species may associate with their phenotypic divergence due to genome evolution. Among 935 bovine SNPs, we identified a total of 9 and 7 SNPs significantly associated to fertility and milk production traits in water buffalo, respectively. However, more works in larger sample size are needed in future to verify these candidate SNPs for water buffalo.


Assuntos
Búfalos/genética , Bovinos/genética , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Animais , Cromossomos de Mamíferos/genética , Evolução Molecular , Feminino , Fertilidade/genética , Frequência do Gene , Técnicas de Genotipagem , Heterozigoto , Lactação/genética , Leite/metabolismo , Modelos Genéticos , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Componente Principal , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico
12.
Int J Mol Sci ; 14(12): 23955-79, 2013 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-24351868

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) can infect pigs and cause enormous economic losses to the pig industry worldwide. Porcine sialoadhesin (pSN) and CD163 have been identified as key viral receptors on porcine alveolar macrophages (PAM), a main target cell infected by PRRSV. In this study, the protein structures of amino acids 1-119 from the pSN and cSN (cattle sialoadhesin) N-termini (excluding the 19-amino acid signal peptide) were modeled via homology modeling based on mSN (mouse sialoadhesin) template structures using bioinformatics tools. Subsequently, pSN and cSN homology structures were superposed onto the mSN protein structure to predict the binding sites of pSN. As a validation experiment, the SN N-terminus (including the wild-type and site-directed-mutant-types of pSN and cSN) was cloned and expressed as a SN-GFP chimera protein. The binding activity between SN and PRRSV was confirmed by WB (Western blotting), FAR-WB (far Western blotting), ELISA (enzyme-linked immunosorbent assay) and immunofluorescence assay. We found that the S107 amino acid residue in the pSN N-terminal played a crucial role in forming a special cavity, as well as a hydrogen bond for enhancing PRRSV binding during PRRSV infection. S107 may be glycosylated during PRRSV infection and may also be involved in forming the cavity for binding PRRSV along with other sites, including W2, Y44, S45, R97, R105, W106 and V109. Additionally, S107 might also be important for pSN binding with PRRSV. However, the function of these binding sites must be confirmed by further studies.


Assuntos
Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Animais , Sítios de Ligação , Biologia Computacional , Glicosilação , Células HEK293 , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Simulação de Dinâmica Molecular , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , Vírus da Síndrome Respiratória e Reprodutiva Suína/química , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/química , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Suínos
13.
Biol Reprod ; 87(6): 135, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23077171

RESUMO

Endometritis caused by uterine infection after calving reduces fertility and causes major economic losses to the dairy industry. This study investigated the time course of an inflammatory response in bovine endometrium triggered by exposure to bacterial endotoxin lipopolysaccharide (LPS). Mixed endometrial epithelial and stromal cells (9:1 ratio) were grown to confluence as a model system and treated with an optimized dose of 100 ng/ml LPS in vitro. Gene expression responses were measured using quantitative PCR, and gene products were investigated using assays of culture medium and Western blotting. Of 17 candidate genes tested initially, LPS treatment for 24 h up-regulated mRNA expression of TLR4 signaling (TLR4, CD14), cytokines (IL1B, TNF), chemokines (IL8, CXCL5), antimicrobial peptides (LAP, S100A8, S100A9, S100A12), and matrix metalloproteinases (MMP1, MMP13). A 48 h, LPS time course study showed that TNF increased first at 1 h, followed by peak expression of IL1B at 6 h, and those of S100A8, S100A12, and LAP at 12 h. The intracellular S100A8 protein content doubled at 12-24 h but with little excretion into the medium. Regarding prostaglandin biosynthesis, PTGES mRNA was slightly higher after LPS exposure, whereas expression of the PGF synthase AKR1B1 was inhibited. Despite this, LPS treatment stimulated the secretion of both PGE2 and PGF2(alpha) to a similar extent. These results suggest that the family of S100 Ca²âº binding proteins are released from damaged endometrial cells and may play a major antimicrobial role. Prostaglandin synthesis increased during the uterine infection, but we found no evidence that this was associated with a change in the PGE:PGF ratio.


Assuntos
Doenças dos Bovinos/imunologia , Resistência à Doença , Endometrite/veterinária , Endométrio/imunologia , Receptores de Lipopolissacarídeos/biossíntese , Transdução de Sinais , Receptor 4 Toll-Like/biossíntese , Matadouros , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Bovinos , Doenças dos Bovinos/metabolismo , Células Cultivadas , Técnicas de Cocultura , Citocinas/genética , Citocinas/metabolismo , Endometrite/imunologia , Endometrite/metabolismo , Endométrio/citologia , Endométrio/metabolismo , Células Epiteliais/citologia , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Feminino , Receptores de Lipopolissacarídeos/genética , Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos , Células Estromais/citologia , Células Estromais/imunologia , Células Estromais/metabolismo , Fatores de Tempo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Regulação para Cima
14.
Stress ; 15(3): 293-305, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22043835

RESUMO

Broiler (meat) chickens experience the combined acute stressors of food withdrawal, catching and transport (FCT) prior to slaughter as part of normal commercial practice at the end of their lives. This has associated physiological consequences, potentially affecting both welfare and meat quality, some of which are mediated through altered hepatic function. This study compared global hepatic gene expression between control birds and those exposed to commercial FCT using 20K chicken oligonucleotide microarrays. In response to FCT, 733 genes were differentially expressed of which 486 could be mapped onto the genome. The principal molecular and cellular functions thus affected by FCT involved lipid and carbohydrate metabolism with a suppression of mRNA expression for genes involved in lipogenesis, glycolysis and glycogenolysis and an induction of those involved in gluconeogenesis, fatty acid metabolism and ketone synthesis. There was also significant differential expression of genes associated with cellular control and immune function. These stressful events associated with FCT in commercial broiler chickens altered expression of hepatic genes associated with energy metabolism, with exhaustion of stored hepatic and pectoral muscle glycogen. A better understanding of FCT-induced stress through the use of gene expression arrays may in future inform husbandry practices, to improve both welfare and meat quality.


Assuntos
Galinhas/fisiologia , Expressão Gênica/fisiologia , Fígado/metabolismo , Estresse Psicológico/genética , Estresse Psicológico/metabolismo , Animais , Metabolismo dos Carboidratos/genética , Metabolismo dos Carboidratos/fisiologia , DNA Complementar/biossíntese , DNA Complementar/genética , Feminino , Alimentos , Estudo de Associação Genômica Ampla , Glucose/metabolismo , Hibridização Genética , Sistema Imunitário/fisiopatologia , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/fisiologia , Glicogênio Hepático/metabolismo , Carne , Análise em Microsséries , RNA/genética , RNA/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Estresse Psicológico/imunologia , Meios de Transporte
15.
Front Genet ; 13: 755693, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105082

RESUMO

New Mendelian genetic conditions, which adversely affect livestock, arise all the time. To manage them effectively, some methods need to be devised that are quick and accurate. Until recently, finding the causal genomic site of a new autosomal recessive genetic disease has required a two-stage approach using single-nucleotide polymorphism (SNP) chip genotyping to locate the region containing the new variant. This region is then explored using fine-mapping methods to locate the actual site of the new variant. This study explores bioinformatic methods that can be used to identify the causative variants of recessive genetic disorders with full penetrance with just nine whole genome-sequenced animals to simplify and expedite the process to a one-step procedure. Using whole genome sequencing of only three cases and six carriers, the site of a novel variant causing perinatal mortality in Irish moiled calves was located. Four methods were used to interrogate the variant call format (VCF) data file of these nine animals, they are genotype criteria (GCR), autozygosity-by-difference (ABD), variant prediction scoring, and registered SNP information. From more than nine million variants in the VCF file, only one site was identified by all four methods (Chr4: g.77173487A>T (ARS-UCD1.2 (GCF_002263795.1)). This site was a splice acceptor variant located in the glucokinase gene (GCK). It was verified on an independent sample of animals from the breed using genotyping by polymerase chain reaction at the candidate site and autozygosity-by-difference using SNP-chips. Both methods confirmed the candidate site. Investigation of the GCR method found that sites meeting the GCR were not evenly spread across the genome but concentrated in regions of long runs of homozygosity. Locating GCR sites was best performed using two carriers to every case, and the carriers should be distantly related to the cases, within the breed concerned. Fewer than 20 animals need to be sequenced when using the GCR and ABD methods together. The genomic site of novel autosomal recessive Mendelian genetic diseases can be located using fewer than 20 animals combined with two bioinformatic methods, autozygosity-by-difference, and genotype criteria. In many instances it may also be confirmed with variant prediction scoring. This should speed-up and simplify the management of new genetic diseases to a single-step process.

16.
Animals (Basel) ; 12(16)2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36009735

RESUMO

The risk and severity of clinical infection with Escherichia coli as a causative pathogen for bovine mastitis is influenced by the hosts' phenotypic and genotypic variables. We used RNA-Seq analysis of circulating leukocytes to investigate global transcriptomic profiles and genetic variants from Holstein cows with naturally occurring cases of clinical mastitis, diagnosed using clinical symptoms and milk microbiology. Healthy lactation-matched cows served as controls (CONT, n = 6). Blood samples were collected at two time periods during the recovery phase post diagnosis: EARLY (10.3 ± 1.8 days, n = 6) and LATE (46.7 ± 11 days, n = 3). Differentially expressed genes (DEGs) between the groups were identified using CLC Genomics Workbench V21 and subjected to enrichment analysis. Variant calling was performed following GATKv3.8 best practice. The comparison of E. coli(+) EARLY and CONT cows found the up-regulation of 1090 DEGs, mainly with immune and inflammatory functions. The key signalling pathways involved NOD-like and interleukin-1 receptors and chemokines. Many up-regulated DEGs encoded antimicrobial peptides including cathelicidins, beta-defensins, S100 calcium binding proteins, haptoglobin and lactoferrin. Inflammation had largely resolved in the E. coli(+) LATE group, with only 29 up-regulated DEGs. Both EARLY and LATE cows had up-regulated DEGs encoding ATP binding cassette (ABC) transporters and haemoglobin subunits were also up-regulated in LATE cows. Twelve candidate genetic variants were identified in DEGs between the infected and CONT cows. Three were in contiguous genes WIPI1, ARSG and SLC16A6 on BTA19. Two others (RAC2 and ARHGAP26) encode a Rho-family GTPase and Rho GTPase-activating protein 26. These results show that the initial inflammatory response to E. coli continued for at least 10 days despite prompt treatment and provide preliminary evidence for genetic differences between cows that may predispose them to infection.

17.
Reproduction ; 141(2): 269-81, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21123519

RESUMO

Postpartum dairy cows enter a period of negative energy balance (NEB) associated with low circulating IGF1, during which the uterus must undergo extensive repair following calving. This study investigated the effects of NEB on expression of IGF family members and related genes in the involuting uterus. Cows were allocated to two treatments using differential feeding and milking regimes to produce mild NEB or severe NEB (SNEB). Uterine endometrial samples collected 2 weeks post partum were analysed by quantitative PCR. The expression of IGF-binding protein 4 (IGFBP4) mRNA increased in the endometrium of SNEB cows, with trends towards increased IGFBP1 and reduced IGFBP6 expression. There were no significant differences between treatments in mRNA expression of IGF1, IGF2 or of any hormone receptor studied, but significant correlations across all cows in the expression levels of groups of receptors suggested common regulatory mechanisms: type 1 IGF receptor (IGF1R), IGF2R and insulin receptor (INSR); GHR with ESR1; and ESR2 with NR3C1. The expression of IGF1R and INSR also positively correlated with the circulating urea concentration. Matrix metalloproteinases (MMPs) are important in tissue remodelling and can affect IGF signalling via interaction with IGFBPs. The expression levels of MMP1, MMP3, MMP9 and MMP13 mRNAs all showed major upregulation in the endometrium of cows in SNEB and all except MMP9 were highly correlated with expression of IGFBP4. Alpha(2)-HS-glycoprotein (AHSG) and PDK4, two genes implicated in insulin resistance, were also highly expressed in SNEB. These results suggest that cows in SNEB experience alterations to the IGF and insulin signalling pathways in the postpartum endometrium. This may affect the rate of tissue repair with a possible negative impact on subsequent fertility.


Assuntos
Endométrio/metabolismo , Metabolismo Energético , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Metaloproteinases da Matriz/metabolismo , Período Pós-Parto/metabolismo , Útero/fisiologia , Animais , Biomarcadores/metabolismo , Bovinos , Feminino , Perfilação da Expressão Gênica , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Fator de Crescimento Insulin-Like I/genética , Lactação , Metaloproteinases da Matriz/genética , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
Reproduction ; 142(3): 457-65, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21730111

RESUMO

The oviduct provides the environment to support gamete maturation, fertilisation and early embryo development. As there is a high incidence of early embryonic death in lactating dairy cows, this study compared expression of IGF family members in the oviduct between lactating Holstein-Friesian dairy cows (n=16, 81±2.4 days in milk) and nulliparous heifers (n=16, age 1.6±0.07 years) at three stages of the oestrous cycle: A) newly selected dominant follicle in the luteal phase, B) follicular phase before the LH surge and C) pre-ovulatory phase after the LH surge. Expression of IGF1, IGF2, IGF binding protein 2 (IGFBP2), IGFBP3 and IGFBP6 mRNA was determined in the ampulla of the oviduct. Oviduct side (ipsilateral or contralateral) with respect to the dominant follicle did not affect gene expression. Expression of IGF1 and all three IGFBPs increased significantly between the luteal and the pre-ovulatory phases, with no further significant alteration post-LH surge. Concentrations of circulating IGF1 were higher in heifers than in cows, as was the mRNA expression of IGF1, IGFBP3 and IGFBP6. The pre-LH surge rise in IGFBP2 mRNA was only observed in heifers. IGF2 expression was not influenced by either age or stage of cycle. These three IGFBPs are generally considered to inhibit IGF action. These results indicate tight regulation of IGF bioavailability in the oviductal environment around oestrus, with pronounced differences between cows and heifers, which are likely to influence early embryonic development. Further studies are required to assess the implications for embryo survival.


Assuntos
Bovinos/genética , Estro/genética , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Lactação/fisiologia , Oviductos/metabolismo , Somatomedinas/genética , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Bovinos/metabolismo , Bovinos/fisiologia , Indústria de Laticínios , Ciclo Estral/genética , Ciclo Estral/metabolismo , Estro/metabolismo , Estro/fisiologia , Feminino , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Lactação/genética , Lactação/metabolismo , RNA Mensageiro/metabolismo , Somatomedinas/metabolismo
19.
Front Vet Sci ; 8: 659330, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33898551

RESUMO

Bovine Viral Diarrhea virus (BVDV) is a pestivirus with a single-stranded, positive sense RNA genome. It is endemic in many cattle populations, causing major economic losses in part due to reduced fertility. BVDV exhibits great genetic diversity and is classified as type 1 or 2 (BVDV-1, BVDV-2) with either non-cytopathogenic (ncp) or cytopathogenic (cp) biotypes. Differing strains of ncpBVDV differ in virulence, affecting clinical outcome. BVDV replicates in the reproductive tract, affecting host immunity and embryo survival. This study used an in vitro model of primary bovine endometrial cell cultures to compare the effects of two BVDV ncp type 1a strains of differing virulence (termed HO and KY) on endometrial transcription of candidate interferon stimulated genes (ISG) using qPCR. Half the cultures were stimulated with interferon tau (IFNT, the conceptus produced pregnancy recognition factor) in the presence or absence of viral infection. Cultures were replicated on cells from 10 BVDV-free cows. IFNT treatment stimulated transcription of 10 candidate ISGs, whereas both ncpBVDV-1 strains alone inhibited transcription of 8/10 ISGs. In combined BVDV-1+IFNT cultures, the stimulatory effect of IFNT on expression of GBP4, ISG15, HERC5, RSAD2, IFIH1, IFIT3, and MX1 was significantly inhibited by HO, but only ISG15, RSAD2, IFI27, and IFIT3 were decreased by KY. Inhibition by HO was generally greater. The IFNT-induced expression of TRIM56 was, however, increased by HO. These data show that HO, the more virulent ncpBVDV-1 strain, has a greater capacity to inhibit key antiviral pathways. These differences need confirmation at the protein level but may influence immune tolerance of the host. They could also reduce fertility by increasing uterine susceptibility to bacterial infection and disrupting IFNT-mediated pregnancy recognition.

20.
Reproduction ; 139(1): 139-51, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19819918

RESUMO

IGF1, a potent stimulator of cellular proliferation, differentiation and development, regulates granulosa cell steroidogenesis and apoptosis during follicular development. Depending upon species and stage of follicular growth, IGF1 acts on granulosa cell steroidogenesis either alone or together with FSH. We examined the mechanism of action of IGF1 in bovine granulosa cells in serum-free culture without insulin to determine its potential role in the regulation of steroidogenic and apoptotic regulatory gene expression and to investigate the interaction of FSH with IGF1 on this mechanism. Bovine granulosa cells treated with IGF1 demonstrated a significant increase in 17beta-oestradiol (OE(2)) production, cell number and in mRNA expression of CYP11A1, HSD3B1, CYP19A1, BAX, type 1 IGF receptor (IGF1R) and FSHR, while FSH alone had no significant effects. IGF1 or FSH alone or both together had no effect on BCL2 expression. IGF1 with FSH resulted in a synergistic increase in granulosa cell number and in mRNA expression of CYP19A1 and IGF1R without altering OE(2) production. IGF1 stimulated the phosphoinositide 3'-OH kinase (PI3K) but not the MAPK pathway in granulosa cells, as evidenced by increased phosphorylation of AKT but not extracellular-regulated kinase 1/2. Addition of the PI3K pathway inhibitor LY294002 (but not the MAPK pathway inhibitor PD98059) abrogated the increased expression of genes induced by IGF1. IGF1 therefore up-regulates the steroidogenic and apoptotic regulatory genes via activation of PI3K/AKT in bovine granulosa cells. The synergistic action of IGF1 with FSH is of likely key importance for the development of small antral follicles before selection; subsequently, other factors such as LH may also become necessary for continued cell survival.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Células da Granulosa/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Esteroides/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Bovinos , Proliferação de Células , Células Cultivadas , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Hormônio Foliculoestimulante/metabolismo , Células da Granulosa/enzimologia , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Folículo Ovariano/anatomia & histologia , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , RNA Mensageiro/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Receptores do FSH/genética , Receptores do FSH/metabolismo , Fatores de Tempo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA