Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Inf Model ; 64(15): 6174-6189, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39008832

RESUMO

Anticancer peptides (ACPs) are promising future therapeutics, but their experimental discovery remains time-consuming and costly. To accelerate the discovery process, we propose a computational screening workflow to identify, filter, and prioritize peptide sequences based on predicted class probability, antitumor activity, and toxicity. The workflow was applied to identify novel ACPs with potent activity against colorectal cancer from the genome sequences of Candida albicans. As a result, four candidates were identified and validated in the HCT116 colon cancer cell line. Among them, PCa1 and PCa2 emerged as the most potent, displaying IC50 values of 3.75 and 56.06 µM, respectively, and demonstrating a 4-fold selectivity for cancer cells over normal cells. In the colon xenograft nude mice model, the administration of both peptides resulted in substantial inhibition of tumor growth without causing significant adverse effects. In conclusion, this work not only contributes a proven computational workflow for ACP discovery but also introduces two peptides, PCa1 and PCa2, as promising candidates poised for further development as targeted therapies for colon cancer. The method as a web service is available at https://app.cbbio.online/acpep/home and the source code at https://github.com/cartercheong/AcPEP_classification.git.


Assuntos
Antineoplásicos , Candida albicans , Peptídeos , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Animais , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Peptídeos/química , Peptídeos/farmacologia , Camundongos Nus , Genoma Fúngico , Simulação por Computador , Camundongos , Células HCT116 , Ensaios Antitumorais Modelo de Xenoenxerto
2.
J Chem Inf Model ; 61(8): 3789-3803, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34327990

RESUMO

Cancer is one of the leading causes of death worldwide. Conventional cancer treatment relies on radiotherapy and chemotherapy, but both methods bring severe side effects to patients, as these therapies not only attack cancer cells but also damage normal cells. Anticancer peptides (ACPs) are a promising alternative as therapeutic agents that are efficient and selective against tumor cells. Here, we propose a deep learning method based on convolutional neural networks to predict biological activity (EC50, LC50, IC50, and LD50) against six tumor cells, including breast, colon, cervix, lung, skin, and prostate. We show that models derived with multitask learning achieve better performance than conventional single-task models. In repeated 5-fold cross validation using the CancerPPD data set, the best models with the applicability domain defined obtain an average mean squared error of 0.1758, Pearson's correlation coefficient of 0.8086, and Kendall's correlation coefficient of 0.6156. As a step toward model interpretability, we infer the contribution of each residue in the sequence to the predicted activity by means of feature importance weights derived from the convolutional layers of the model. The present method, referred to as xDeep-AcPEP, will help to identify effective ACPs in rational peptide design for therapeutic purposes. The data, script files for reproducing the experiments, and the final prediction models can be downloaded from http://github.com/chen709847237/xDeep-AcPEP. The web server to directly access this prediction method is at https://app.cbbio.online/acpep/home.


Assuntos
Aprendizado Profundo , Humanos , Masculino , Redes Neurais de Computação , Peptídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA