Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36674525

RESUMO

Cancer recurrence and drug resistance following treatment, as well as metastatic forms of cancer, are trends that are commonly encountered in cancer management. Amidst the growing popularity of personalized medicine and targeted therapy as effective cancer treatment, studies involving the use of stem cells in cancer therapy are gaining ground as promising translational treatment options that are actively pursued by researchers due to their unique tumor-homing activities and anti-cancer properties. Therefore, this review will highlight cancer interactions with commonly studied stem cell types, namely, mesenchymal stroma/stem cells (MSC), induced pluripotent stem cells (iPSC), iPSC-derived MSC (iMSC), and cancer stem cells (CSC). A particular focus will be on the effects of paracrine signaling activities and exosomal miRNA interaction released by MSC and iMSCs within the tumor microenvironment (TME) along with their therapeutic potential as anti-cancer delivery agents. Similarly, the role of exosomal miRNA released by CSCs will be further discussed in the context of its role in cancer recurrence and metastatic spread, which leads to a better understanding of how such exosomal miRNA could be used as potential forms of non-cell-based cancer therapy.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Mesenquimais , MicroRNAs , Neoplasias , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Neoplasias/terapia , Neoplasias/metabolismo , Células-Tronco Neoplásicas , Microambiente Tumoral
2.
Adv Exp Med Biol ; 1401: 191-211, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35816249

RESUMO

Regenerative medicine is shaping into a new paradigm and could be the future medicine driven by the therapeutic capabilities shown by mesenchymal stem cell-derived extracellular vesicles (MSC-EVs). Despite the advantages and promises, the therapeutic effectiveness of MSC-EVs in some clinical applications is restricted due to inconsistent manufacturing process and the lack of stringent quality control (QC) measurement. In particular, QC assays which are crucial to confirm the safety, efficacy, and quality of MSC-EVs available for end use are poorly designed. Hence, in this review, characterization of MSC-EVs and quality control guidelines for biologics are presented, with special attention given to the description of technical know-how in developing QC assays for MSC-EVs adhering to regulatory guidelines. The remaining challenges surrounding the development of potency and stability of QC assays are also addressed.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Controle de Qualidade
3.
Adv Exp Med Biol ; 1401: 73-95, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35781218

RESUMO

The application of stem cells to treat perianal fistula due to Crohn's disease has attracted a lot of interest in recent decades. Though still a popular procedure, the existing surgical methods may be an ideal form of therapy since the recurrence rate is high, which affects the quality of life badly. Stem cell therapy offers to be a better solution in treating PF, but the utilisation is often restricted because of the manufacturing cost. Hence in this review, the selection of suitable cell sources, the use of bioreactors and preconditioning MSCs as well as modified stem cells will be discussed for a more affordable as compared with the current MSC therapy towards PF. We anticipate that exploring these approaches may give a complete picture in understanding stem cells in order to make them effective and affordable for long-term therapeutic applications.


Assuntos
Doença de Crohn , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Fístula Retal , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Qualidade de Vida , Fístula Retal/etiologia , Fístula Retal/terapia , Doença de Crohn/terapia , Resultado do Tratamento
4.
Cytotherapy ; 23(9): 833-840, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33992536

RESUMO

BACKGROUND AIMS: Mesenchymal stromal cells (MSCs) are characterized by paracrine and immunomodulatory functions capable of changing the microenvironment of damaged brain tissue toward a more regenerative and less inflammatory milieu. The authors conducted a phase 2, single-center, assessor-blinded randomized controlled trial to investigate the safety and efficacy of intravenous autologous bone marrow-derived MSCs (BMMSCs) in patients with subacute middle cerebral artery (MCA) infarct. METHODS: Patients aged 30-75 years who had severe ischemic stroke (National Institutes of Health Stroke Scale [NIHSS] score of 10-35) involving the MCA territory were recruited within 2 months of stroke onset. Using permuted block randomization, patients were assigned to receive 2 million BMMSCs per kilogram of body weight (treatment group) or standard medical care (control group). The primary outcomes were the NIHSS, modified Rankin Scale (mRS), Barthel Index (BI) and total infarct volume on brain magnetic resonance imaging (MRI) at 12 months. All outcome assessments were performed by blinded assessors. Per protocol, analyses were performed for between-group comparisons. RESULTS: Seventeen patients were recruited. Nine were assigned to the treatment group, and eight were controls. All patients were severely disabled following their MCA infarct (median mRS = 4.0 [4.0-5.0], BI = 5.0 [5.0-25.0], NIHSS = 16.0 [11.5-21.0]). The baseline infarct volume on the MRI was larger in the treatment group (median, 71.7 [30.5-101.7] mL versus 26.7 [12.9-75.3] mL, P = 0.10). There were no between-group differences in median NIHSS score (7.0 versus 6.0, P = 0.96), mRS (2.0 versus 3.0, P = 0.38) or BI (95.0 versus 67.5, P = 0.33) at 12 months. At 12 months, there was significant improvement in absolute change in median infarct volume, but not in total infarct volume, from baseline in the treatment group (P = 0.027). No treatment-related adverse effects occurred in the BMMSC group. CONCLUSIONS: Intravenous infusion of BMMSCs in patients with subacute MCA infarct was safe and well tolerated. Although there was no neurological recovery or functional outcome improvement at 12 months, there was improvement in absolute change in median infarct volume in the treatment group. Larger, well-designed studies are warranted to confirm this and the efficacy of BMMSCs in ischemic stroke.


Assuntos
Isquemia Encefálica , Células-Tronco Mesenquimais , Acidente Vascular Cerebral , Humanos , Infarto da Artéria Cerebral Média/diagnóstico por imagem , Infarto da Artéria Cerebral Média/terapia , Infusões Intravenosas , Artéria Cerebral Média , Resultado do Tratamento
5.
Cell Biol Int ; 45(10): 1999-2016, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34245637

RESUMO

Ageing and age-related diseases share some basic origin that largely converges on inflammation. Precisely, it boils down to a common pathway characterised by the appearance of a fair amount of proinflammatory cytokines known as inflammageing. Among the proposed treatment for antiageing, MSCs gained attention in recent years. Since mesenchymal stem cells (MSCs) can differentiate itself into a myriad of terminal cells, previously it was believed that these cells migrate to the site of injury and perform their therapeutic effect. However, with the more recent discovery of huge amounts of paracrine factors secreted by MSCs, it is now widely accepted that these cells do not engraft upon transplantation but rather unveil their benefits through excretion of bioactive molecules namely those involved in inflammatory and immunomodulatory activities. Conversely, the true function of these paracrine changes has not been thoroughly investigated all these years. Hence, this review will describe in detail on ways MSCs may capitalize its paracrine properties in modulating antiageing process. Through a comprehensive literature search various elements in the antiageing process, we aim to provide a novel treatment perspective of MSCs in antiageing related clinical conditions.


Assuntos
Envelhecimento , Células-Tronco Hematopoéticas/citologia , Imunomodulação , Transplante de Células-Tronco Mesenquimais/métodos , Comunicação Parácrina , Terapêutica , Animais , Humanos
6.
Int J Med Sci ; 18(8): 1798-1809, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33746597

RESUMO

Cell migration and invasion are modulated by epithelial-to-mesenchymal transition (EMT) and the reverse MET process. Despite the detection of microRNA-362 (miR-362, both the miR-362-5p and -3p species) in cancers, none of the identified miR-362 targets is a mesenchymal or epithelial factor to link miR-362 with EMT/MET and metastasis. Focusing on the TGF-ß/SMAD signaling pathway in this work, luciferase assays and western blot data showed that miR-362 targeted and negatively regulated expression of SMAD4 and E-cadherin, but not SNAI1, which is regulated by SMAD4. However, miR-362 knockdown also down-regulated SMAD4 and SNAI1, but up-regulated E-cadherin expression. Wound-healing and transwell assays further showed that miR-362 knockdown suppressed cell migration and invasion, effects which were reversed by over-expressing SMAD4 or SNAI1, or by knocking down E-cadherin in the miR-362 knockdown cells. In orthotopic mice, miR-362 knockdown inhibited metastasis, and displayed the same SMAD4 and E-cadherin expression profiles in the tumors as in the in vitro studies. A scheme is proposed to integrate miR-362 negative regulation via SMAD4, and to explain miR-362 positive regulation of SMAD4 via miR-362 targeting of known SMAD4 suppressors, BRK and DACH1, which would have resulted in SMAD4 depletion and annulment of subsequent involvement in TGF-ß signaling actions. Hence, miR-362 both negatively and positively regulates SMAD4 expression in TGF-ß/SMAD signaling pathway to suppress cell motility and invasiveness and metastasis, and may explain the reported clinical association of anti-miR-362 with suppressed metastasis in various cancers. MiR-362 knockdown in miR-362-positive cancer cells may be used as a therapeutic strategy to suppress metastasis.


Assuntos
MicroRNAs/metabolismo , Neoplasias/genética , Proteína Smad4/genética , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Invasividade Neoplásica/genética , Neoplasias/patologia , Transdução de Sinais/genética , Proteína Smad4/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Sheng Li Xue Bao ; 73(2): 181-196, 2021 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-33903880

RESUMO

Organoids are self-organized cellular clusters in three-dimensional culture, which can be derived from a single stem cell, progenitor or cell clusters of different lineages resembling in vivo tissue architecture of an organ. In the recent years, organoids technology has contributed to the revolutionary changes in stem cell and cancer fields. In this review, we have briefly overviewed the emerging landscape of prostate organoid technology (POT) in prostate research. In addition, we have also summarized the potential application of POT in the understanding of prostate stem cell and cancer biology and the discovery of novel therapeutic strategies for prostate cancer. Lastly, we have critically discussed key challenges that lie in the current state of POT and provided a future perspective on the second-generation of POT, which should better recapitulate cellular behaviors and drug responses of prostate cancer patients.


Assuntos
Neoplasias , Organoides , Ouro , Humanos , Masculino , Próstata , Células-Tronco , Tecnologia
8.
BMC Genomics ; 21(1): 467, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32635896

RESUMO

BACKGROUND: Mesangial cells play an important role in the glomerulus to provide mechanical support and maintaine efficient ultrafiltration of renal plasma. Loss of mesangial cells due to pathologic conditions may lead to impaired renal function. Mesenchymal stem cells (MSC) can differentiate into many cell types, including mesangial cells. However transcriptomic profiling during MSC differentiation into mesangial cells had not been studied yet. The aim of this study is to examine the pattern of transcriptomic changes during MSC differentiation into mesangial cells, to understand the involvement of transcription factor (TF) along the differentiation process, and finally to elucidate the relationship among TF-TF and TF-key gene or biomarkers during the differentiation of MSC into mesangial cells. RESULTS: Several ascending and descending monotonic key genes were identified by Monotonic Feature Selector. The identified descending monotonic key genes are related to stemness or regulation of cell cycle while ascending monotonic key genes are associated with the functions of mesangial cells. The TFs were arranged in a co-expression network in order of time by Time-Ordered Gene Co-expression Network (TO-GCN) analysis. TO-GCN analysis can classify the differentiation process into three stages: differentiation preparation, differentiation initiation and maturation. Furthermore, it can also explore TF-TF-key genes regulatory relationships in the muscle contraction process. CONCLUSIONS: A systematic analysis for transcriptomic profiling of MSC differentiation into mesangial cells has been established. Key genes or biomarkers, TFs and pathways involved in differentiation of MSC-mesangial cells have been identified and the related biological implications have been discussed. Finally, we further elucidated for the first time the three main stages of mesangial cell differentiation, and the regulatory relationships between TF-TF-key genes involved in the muscle contraction process. Through this study, we have increased fundamental understanding of the gene transcripts during the differentiation of MSC into mesangial cells.


Assuntos
Diferenciação Celular/genética , Células Mesangiais/metabolismo , Células-Tronco Mesenquimais/metabolismo , Transcriptoma , Biomarcadores/metabolismo , Células Cultivadas , Técnicas de Cocultura , Redes Reguladoras de Genes , Humanos , Células Mesangiais/fisiologia , Células-Tronco Mesenquimais/citologia , Contração Muscular , Músculo Liso Vascular/fisiologia , RNA-Seq , Fatores de Transcrição/metabolismo
9.
Int J Med Sci ; 17(4): 457-470, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32174776

RESUMO

Oxidative stress has been linked to senescence and tumorigenesis via modulation of the cell cycle. Using a hydrogen peroxide (H2O2)-induced oxidative stress-induced premature senescence (OSIPS) model previously reported by our group, this study aimed to investigate the effects of oxidative stress on microRNA (miRNA) expression in relation to the G1-to-S-phase (G1/S) transition of the cell cycle and cell proliferation. On global miRNA analysis of the OSIPS cells, twelve significantly up- or down-regulated miRNAs were identified, the target genes of which are frequently associated with cancers. Four down-regulated miR-17 family miRNAs are predicted to target key pro- and anti-proliferative proteins of the p21/cyclin D-dependent kinase (CDK)/E2F1 pathway to modulate G1/S transition. Two miR-17 miRNAs, miR-20-5p and miR-106-5p, were confirmed to be rapidly and stably down-regulated under oxidative stress. While H2O2 treatment hampered G1/S transition and suppressed DNA synthesis, miR-20b-5p/miR-106a-5p over-expression rescued cells from growth arrest in promoting G1/S transition and DNA synthesis. Direct miR-20b-5p/miR-106a-5p regulation of p21, CCND1 and E2F1 was demonstrated by an inverse expression relationship in miRNA mimic-transfected cells. However, under oxidative stress, E2F1 expression was down-regulated, consistent with hampered G1/S transition and suppressed DNA synthesis and cell proliferation. To explain the observed E2F1 down-regulation under oxidative stress, a scheme is proposed which includes miR-20b-5p/miR-106a-5p-dependent regulation, miRNA-E2F1 autoregulatory feedback and E2F1 response to repair oxidative stress-induced DNA damages. The oxidative stress-modulated expression of miR-17 miRNAs and E2F1 may be used to develop strategies to retard or reverse MSC senescence in culture, or senescence in general.


Assuntos
Fator de Transcrição E2F1/metabolismo , MicroRNAs/metabolismo , Estresse Oxidativo/fisiologia , Western Blotting , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Fator de Transcrição E2F1/genética , Humanos , Peróxido de Hidrogênio/farmacologia , MicroRNAs/genética , Estresse Oxidativo/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
Int J Mol Sci ; 21(21)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33114016

RESUMO

Spheroidal cancer cell cultures have been used to enrich cancer stem cells (CSC), which are thought to contribute to important clinical features of tumors. This study aimed to map the regulatory networks driven by circular RNAs (circRNAs) in CSC-enriched colorectal cancer (CRC) spheroid cells. The spheroid cells established from two CRC cell lines acquired stemness properties in pluripotency gene expression and multi-lineage differentiation capacity. Genome-wide sequencing identified 1503 and 636 circRNAs specific to the CRC parental and spheroid cells, respectively. In the CRC spheroids, algorithmic analyses unveiled a core network of mRNAs involved in modulating stemness-associated signaling pathways, driven by a circRNA-microRNA (miRNA)-mRNA axis. The two major circRNAs, hsa_circ_0066631 and hsa_circ_0082096, in this network were significantly up-regulated in expression levels in the spheroid cells. The two circRNAs were predicted to target and were experimentally shown to down-regulate miR-140-3p, miR-224, miR-382, miR-548c-3p and miR-579, confirming circRNA sponging of the targeted miRNAs. Furthermore, the affected miRNAs were demonstrated to inhibit degradation of six mRNA targets, viz. ACVR1C/ALK7, FZD3, IL6ST/GP130, SKIL/SNON, SMAD2 and WNT5, in the CRC spheroid cells. These mRNAs encode proteins that are reported to variously regulate the GP130/Stat, Activin/Nodal, TGF-ß/SMAD or Wnt/ß-catenin signaling pathways in controlling various aspects of CSC stemness. Using the CRC spheroid cell model, the novel circRNA-miRNA-mRNA axis mapped in this work forms the foundation for the elucidation of the molecular mechanisms of the complex cellular and biochemical processes that determine CSC stemness properties of cancer cells, and possibly for designing therapeutic strategies for CRC treatment by targeting CSC.


Assuntos
Neoplasias Colorretais/genética , MicroRNAs/genética , RNA Circular/genética , RNA Mensageiro/genética , Esferoides Celulares/patologia , Técnicas de Cultura de Células , Linhagem Celular Tumoral/química , Neoplasias Colorretais/patologia , Biologia Computacional/métodos , Redes Reguladoras de Genes , Humanos , Células-Tronco Neoplásicas/química , Células-Tronco Neoplásicas/patologia , Análise de Sequência de RNA , Esferoides Celulares/química , Esferoides Celulares/citologia , Sequenciamento do Exoma
11.
J Biomed Sci ; 25(1): 57, 2018 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-30025541

RESUMO

BACKGROUND: Induced pluripotency in cancer cells by ectopic expression of pluripotency-regulating factors may be used for disease modeling of cancers. MicroRNAs (miRNAs) are negative regulators of gene expression that play important role in reprogramming somatic cells. However, studies on the miRNA expression profile and the expression patterns of the mesenchymal-epithelial transition (MET)/epithelial-mesenchymal transition (EMT) genes in induced pluripotent cancer (iPC) cells are lacking. METHODS: iPC clones were generated from two colorectal cancer (CRC) cell lines by retroviral transduction of the Yamanaka factors. The iPC clones obtained were characterized by morphology, expression of pluripotency markers and the ability to undergo in vitro tri-lineage differentiation. Genome-wide miRNA profiles of the iPC cells were obtained by microarray analysis and bioinformatics interrogation. Gene expression was done by real-time RT-PCR and immuno-staining; MET/EMT protein levels were determined by western blot analysis. RESULTS: The CRC-iPC cells showed embryonic stem cell-like features and tri-lineage differentiation abilities. The spontaneously-differentiated post-iPC cells obtained were highly similar to the parental CRC cells. However, down-regulated pluripotency gene expression and failure to form teratoma indicated that the CRC-iPC cells had only attained partial pluripotency. The CRC-iPC cells shared similarities in the genome-wide miRNA expression profiles of both cancer and pluripotent embryonic stem cells. One hundred and two differentially-expressed miRNAs were identified in the CRC-iPC cells, which were predicted by bioinformatics analysis be closely involved in regulating cellular pluripotency and the expression of the MET/EMT genes, possibly via the phosphatidylinositol-3 kinases-protein kinase B (PI3K-Akt) and transforming growth factor beta (TGF-ß) signaling pathways. Irregular and inconsistent expression patterns of the EMT vimentin and Snai1 and MET E-cadherin and occludin proteins were observed in the four CRC-iPC clones analyzed, which suggested an epithelial/mesenchymal hybrid phenotype in the partially reprogrammed CRC cells. MET/EMT gene expression was also generally reversed on re-differentiation, also suggesting epigenetic regulation. CONCLUSIONS: Our data support the elite model for cancer cell-reprogramming in which only a selected subset of cancer may be fully reprogrammed; partial cancer cell reprogramming may also elicit an epithelial-mesenchymal mixed phenotype, and highlight opportunities and challenges in cancer cell-reprogramming.


Assuntos
Reprogramação Celular/genética , Neoplasias Colorretais/genética , Transição Epitelial-Mesenquimal/genética , Proteínas de Neoplasias/genética , Diferenciação Celular/genética , Linhagem Celular Tumoral , Linhagem da Célula/genética , Movimento Celular/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , MicroRNAs/genética , Células-Tronco Neoplásicas/patologia , Fosfatidilinositol 3-Quinases/genética
12.
Toxicol Appl Pharmacol ; 329: 347-357, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28673683

RESUMO

Single-walled carbon nanotubes (SWCNTs) are carbon-based nanomaterials that possess immense industrial potential. Despite accumulating evidence that exposure to SWCNTs might be toxic to humans, our understanding of the mechanisms for cellular toxicity of SWCNTs remain limited. Here, we demonstrated that acute exposure of short (1-3µm) and regular-length (5-30µm) pristine, carboxylated or hydroxylated SWCNTs inhibited cell proliferation in human somatic and human stem cells in a cell type-dependent manner. The toxicity of regular-length pristine SWCNT was most evidenced in NP69>CYT00086>MCF-10A>MRC-5>HaCaT > HEK-293T>HepG2. In contrast, the short pristine SWCNTs were relatively less toxic in most of the cells being tested, except for NP69 which is more sensitive to short pristine SWCNTs as compared to regular-length pristine SWCNTs. Interestingly, carboxylation and hydroxylation of regular-length SWCNTs, but not the short SWCNTs, significantly reduced the cytotoxicity. Exposure of SWCNTs also induced caspase 3 and 9 activities, mitochondrial membrane depolarization, and significant apoptosis and necrosis in MRC-5 embryonic lung fibroblasts. In contrast, SWCNTs inhibited the proliferation of HaCaT human keratinocytes without inducing cell death. Further analyses by gene expression profiling and Connectivity Map analysis showed that SWCNTs induced a gene expression signature characteristic of heat shock protein 90 (HSP90) inhibition in MRC-5 cells, suggesting that SWCNTs may inhibit the HSP90 signaling pathway. Indeed, exposure of MRC-5 cells to SWCNTs results in a dose-dependent decrease in HSP90 client proteins (AKT, CDK4 and BCL2) and a concomitant increase in HSP70 expression. In addition, SWCNTs also significantly inhibited HSP90-dependent protein refolding. Finally, we showed that ectopic expression of HSP90, but not HSP40 or HSP70, completely abrogated the cytotoxic effects of SWCNTs, suggesting that SWCNT-induced cellular toxicity is HSP90 dependent. In summary, our findings suggest that the toxic effects of SWCNTs are mediated through inhibition of HSP90 in human lung fibroblasts and keratinocytes.


Assuntos
Ácidos Carboxílicos/toxicidade , Fibroblastos/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Queratinócitos/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Fibroblastos/metabolismo , Fibroblastos/patologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Células Hep G2 , Humanos , Hidroxilação , Queratinócitos/metabolismo , Queratinócitos/patologia , Pulmão/metabolismo , Pulmão/patologia , Necrose , Fatores de Tempo , Transfecção
13.
J Biomed Sci ; 24(1): 20, 2017 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-28270145

RESUMO

BACKGROUND: The human chromosome 19 miRNA cluster (C19MC) of 43 genes is a primate-specific miRNA cluster that may have biological significance in the genetic complexity of the primate. Despite previous reports on individual C19MC miRNA expression in cancer and stem cells, systematic studies on C19MC miRNA expression and biological functions are lacking. RESULTS: Cluster-wide C19MC miRNA expression profiling by microarray analysis showed wholesome C19MC activation in embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). However, in multipotent adipose-derived mesenchymal stem cells (MSCs) and a unipotent human white pre-adipocyte cell line, only selected C19MC miRNAs were expressed. MiRNA copy number analysis also showed selective C19MC expression in cancer cells with expression patterns highly similar to those in MSCs, suggesting similar miRNA regulatory mechanisms in these cells. Selective miRNA expression also suggests complex transcriptional mechanism(s) regulating C19MC expression under specific cellular and pathological conditions. Bioinformatics analysis showed that sixteen of the C19MC miRNAs share the same "AAGUGC" seed sequence with members of the miR-302/-372 family, which are known cellular reprogramming factors. In particular, C19MC-AAGUGC-miRNAs with the nucleotides 2-7 canonical seed position as in miR-302/-372 miRNAs, may play similar roles as miR-302/-372 in induced pluripotency. A biased 3p-arm selection of the C19MC-AAGUGC-miRNAs was observed indicating that targets of the 3p species of these miRNAs may be biologically significant in regulating stemness. Furthermore, bioinformatics analysis of the putative targets of the C19MC-AAGUGC-miRNAs predicted significant involvement of signaling pathways in reprogramming, many of which contribute to promoting apoptosis by indirect activation of the pro-apoptotic proteins BAK/BAX via suppression of genes of the cell survival pathways, or by enhancing caspase-8 activation through targeting inhibitors of TRAIL-inducing apoptosis. CONCLUSIONS: This work demonstrated selective C19MC expression in MSCs and cancer cells, and, through miRNA profiling and bioinformatics analysis, predicted C19MC modulation of apoptosis in induced pluripotency and tumorigenesis.


Assuntos
Apoptose/genética , Carcinogênese/genética , MicroRNAs/biossíntese , Neoplasias/genética , Animais , Cromossomos Humanos Par 19/genética , Variações do Número de Cópias de DNA/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , Família Multigênica , Primatas/genética
14.
Transfusion ; 55(5): 1028-32, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25472857

RESUMO

BACKGROUND: Processed umbilical cord blood (UCB) must be stored at cryogenic temperature at all times to maintain the quality and viability of the cells. However, a challenge is presented in the form of moving a large number of cryopreserved UCB samples to a new location. In this report, we share our experience on relocating more than 100,000 units of cryopreserved UCB samples stored in 12 liquid nitrogen freezers (LNFs) to our new laboratory. STUDY DESIGN AND METHODS: For quality control purposes, 2 weeks before relocation, donor UCB samples were processed, cryopreserved, and stored in each LNF. On relocation day, half of the samples were retrieved to determine total nucleated cell count, percentage of CD34+ cells, and cell viability as controls for later comparison. UCB samples were transferred into dry shippers before being relocated to the new laboratory. Upon arrival, LNFs were serviced before transferring UCB samples back into its original location within the LNF. The remaining donor UCB samples were retrieved and analyzed for the same tests mentioned. RESULTS: We found no significant differences in pre- and postrelocation values of the tests performed. CONCLUSION: All UCB samples were successfully relocated into the new laboratory without affecting the quality.


Assuntos
Criopreservação/métodos , Sangue Fetal , Antígenos CD34/metabolismo , Humanos , Temperatura
15.
Cell Biol Int ; 38(4): 497-501, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24375917

RESUMO

Mesangial cells are one of the three major cell types of the kidney glomerulus that provide physical support for the glomerular capillary lumen of the kidney. Loss of mesangial cells due to pathologic conditions, such as glomerulonephritis and diabetic nephropathy, can impair renal function. Mesenchymal stem cells (MSC) are attractive candidates for kidney repair therapy since they can enhance recovery and protect against kidney failure. MSC can differentiate into mesangial cells in vivo. We have investigated the ability of MSC to differentiate into mesangial cells in vitro; they were co-cultured with oxidant-injured mesangial cells before being analysed by flow cytometry and for contractility. MSC co-cultured with injured mesangial cells had a mesangial cell-like morphology and contracted in response to angiotensin II. They expressed CD54(-) CD62E(+) in direct contrast to the CD54(+) CD62E(-) of pure MSC. In conclusion, MSC can differentiate into mesangial cells in vitro when co-cultured with injured mesangial cells.


Assuntos
Diferenciação Celular , Células Mesangiais/citologia , Células-Tronco Mesenquimais/citologia , Angiotensina II/farmacologia , Células Cultivadas , Técnicas de Cocultura , Selectina E/metabolismo , Humanos , Imunofenotipagem , Molécula 1 de Adesão Intercelular/metabolismo , Células Mesangiais/patologia , Contração Muscular/efeitos dos fármacos
16.
Int J Med Sci ; 11(11): 1154-60, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25170299

RESUMO

Four osteosarcoma cell lines, Saos-2, MG-63, G-292 and U-2 OS, were reprogrammed to pluripotent state using Yamanaka factors retroviral transduction method. Embryonic stem cell (ESC)-like clusters started to appear between 15 to 20 days post transduction. Morphology of the colonies resembled that of ESC colonies with defined border and tightly-packed cells. The reprogrammed sarcomas expressed alkaline phosphatase and pluripotency markers, OCT4, SSEA4, TRA-1-60 and TRA-1-81, as in ESC up to Passage 15. All reprogrammed sarcomas could form embryoid body-like spheres when cultured in suspension in a low attachment dish for up to 10 days. Further testing on the directed differentiation capacity of the reprogrammed sarcomas showed all four reprogrammed sarcoma lines could differentiate into adipocytes while reprogrammed Saos-2-REP, MG-63-REP and G-292-REP could differentiate into osteocytes. Among the 4 osteosarcoma cell lines, U-2 OS reported the highest transduction efficiency but recorded the lowest reprogramming stability under long term culture. Thus, there may be intrinsic differences governing the variable responses of osteosarcoma cell lines towards reprogramming and long term culture effect of the reprogrammed cells. This is a first report to associate intrinsic factors in different osteosarcoma cell lines with variable reprogramming responses and effects on the reprogrammed cells after prolonged culture.


Assuntos
Reprogramação Celular/fisiologia , Osteossarcoma/metabolismo , Antígenos de Superfície/genética , Antígenos de Superfície/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Reprogramação Celular/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Humanos , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Osteócitos/citologia , Osteócitos/metabolismo , Osteossarcoma/genética , Proteoglicanas/genética , Proteoglicanas/metabolismo , Antígenos Embrionários Estágio-Específicos/genética , Antígenos Embrionários Estágio-Específicos/metabolismo
17.
Int J Med Sci ; 11(8): 824-33, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24936146

RESUMO

BACKGROUND: A miRNA precursor generally gives rise to one major miRNA species derived from the 5' arm, and are called miRNA-5p. However, more recent studies have shown co-expression of miRNA-5p and -3p, albeit in different concentrations, in cancer cells targeting different sets of transcripts. Co-expression and regulation of the -5p and -3p miRNA species in stem cells, particularly in the reprogramming process, have not been studied. METHODS: In this work, we investigated co-expression and regulation of miRNA-5p and -3p species in human induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs) and embryonic stem cells (ESC) using a nanoliter-scale real-time PCR microarray platform that included 1,036 miRNAs. RESULTS: In comparing iPSC and ESC, only 32 miRNAs were found to be differentially expressed, in agreement of the ESC-like nature of iPSC. In the analysis of reprogramming process in iPSCs, 261 miRNAs were found to be differentially expressed compared with the parental MSC and pre-adipose tissue, indicating significant miRNA alternations in the reprogramming process. In iPSC reprogrammed from MSC, there were 88 miRNAs (33.7%), or 44 co-expressed 5p/3p pairs, clearly indicating frequent co-expression of both miRNA species on reprogramming. Of these, 40 pairs were either co-up- or co-downregulated indicating concerted 5p/3p regulation. The 5p/3p species of only 4 pairs were regulated in reverse directions. Furthermore, some 5p/3p species of the same miRNAs were found to target the same transcript and the same miRNA may cross-target different transcripts of proteins of the G1/S transition of the cell cycle; 5p/3p co-targeting was confirmed in stem-loop RT-PCR. CONCLUSION: The observed cross- and co-regulation by paired miRNA species suggests a fail-proof scheme of miRNA regulation in iPSC, which may be important to iPSC pluripotency.


Assuntos
Células-Tronco Embrionárias/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/biossíntese , Diferenciação Celular , Reprogramação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , MicroRNAs/genética
18.
Int J Med Sci ; 11(11): 1201-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25249788

RESUMO

BACKGROUND: On in vitro expansion for therapeutic purposes, the regenerative potentials of mesenchymal stem cells (MSCs) decline and rapidly enter pre-mature senescence probably involving oxidative stress. To develop strategies to prevent or slow down the decline of regenerative potentials in MSC culture, it is important to first address damages caused by oxidative stress-induced premature senescence (OSIPS). However, most existing OSIPS study models involve either long-term culture to achieve growth arrest or immediate growth arrest post oxidative agent treatment and are unsuitable for post-induction studies. METHODS: In this work, we aimed to establish an OSIPS model of MSCs derived from Wharton's Jelly by hydrogen peroxide (H2O2) treatment. RESULTS: The optimal H2O2 concentration was determined to be 200 µM to achieve OSIPS when MSC reached growth arrest in 3 to 4 passages post-H2O2 treatment. H2O2-treated cells became heterogeneous in morphology, and were irregularly enlarged and flattened with granular cytoplasm. The cells were stained positive for SA-ß-galactosidase, a senescence marker, and were shown to express elevated levels of other well-characterized senescence molecular markers, including p53, p21, p16 and lysosomal ß-galactosidase (GLB1) in real-time RT-PCR analysis. The OSIPS-like features were confirmed with three independent WJ-MSC lines. CONCLUSION: The establishment of an OSIPS model of WJ-MSC is a first step for subsequent investigation on molecular mechanisms of senescence and for screening potential anti-oxidative agents to delay or revert stressed-induced senescence.


Assuntos
Células-Tronco Mesenquimais/citologia , Geleia de Wharton/citologia , Linhagem Celular , Senescência Celular/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real
19.
Biomed Tech (Berl) ; 69(2): 141-150, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37856824

RESUMO

OBJECTIVES: Numerous studies indicate that deep breathing (DB) enhances wellbeing. Multiple deep breathing methods exist, but few employ audio to reach similar results. This study developed audio-guided DB and evaluated its immediate impacts on healthy population via self-created auditory Go/No-Go task, tidal volume changes, and psychological measures. METHODS: Audio-guided DB with natural sounds to guide the DB was developed. Meanwhile, audio-based Go/No-Go paradigm with Arduino was built to measure the attention level. Thirty-two healthy young adults (n=32) were recruited. Psychological questionnaires (Rosenberg's Self-Esteem Scale (RSES), Cognitive and Affective Mindfulness Scale-Revised (CAMS-R), Perceived Stress Scale (PSS)), objective measurements with tidal volume and attention level with auditory Go/No-Go task were conducted before and after 5 min of DB. RESULTS: Results showed a significant increment in tidal volume and task reaction time from baseline (p=0.003 and p=0.033, respectively). Significant correlations were acquired between (1) task accuracy with commission error (r=-0.905), (2) CAMS-R with task accuracy (r=-0.425), commission error (r=0.53), omission error (r=0.395) and PSS (r=-0.477), and (3) RSES with task reaction time (r=-0.47), task accuracy (r=-0.362), PSS (r=-0.552) and CAMS-R (r=0.591). CONCLUSIONS: This pilot study suggests a link between it and young adults' wellbeing and proposes auditory Go/No-Go task for assessing attention across various groups while maintaining physical and mental wellness.


Assuntos
Atenção , Testes Psicológicos , Humanos , Adulto Jovem , Projetos Piloto , Tempo de Reação , Autorrelato
20.
In Vitro Cell Dev Biol Anim ; 60(3): 307-319, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38421574

RESUMO

Human umbilical cord-mesenchymal stem cells (hUC-MSCs) have been widely investigated as a new therapeutic agent to treat injuries and inflammatory-mediated and autoimmune diseases. Previous studies have reported on the safety of low-dose infusion of hUC-MSCs, but information on the cell behaviour at higher doses and frequency of injection of the cells remains uncertain. The aim of the present study was to demonstrate the safety and efficacy of hUC-MSCs by Cytopeutics® (Selangor, Malaysia) from low to an extremely high dose in different monitoring periods in healthy BALB/c mice as well as assessing the tumorigenicity of the cells in B-NDG SCID immunocompromised mice. Umbilical cord from two healthy human newborns was obtained and the isolation of the hUC-MSCs was performed based on previous established method. Assessment of the cells at different doses of single or multiple administrations was performed on healthy BALB/c mice in dose range finding, sub-acute (7 d and 28 d) and sub-chronic periods (90 d). Tumorigenicity potential of Cytopeutics® hUC-MSCs was also evaluated on B-NDG immunocompromised mice for 26 wk. Single or multiple administrations of Cytopeutics® hUC-MSCs up to 40 × 106 cells per kilogramme of body weight (kg BW) were found to have no adverse effect in terms of clinical symptoms, haematology and other laboratory parameters, and histology examination in healthy BALB/c mice. hUC-MSCs were also found to reduce pro-inflammatory cytokines (IL-6 and TNF-α) in a dose-dependent manner. No sign of tumor formation was observed in B-NDG mice in the 26-wk tumorigenicity assessment. Single or multiple administration of allogenic Cytopeutics® hUC-MSCs was safe even at very high doses, is non-tumorigenic and did not cause adverse effects in mice throughout the evaluation periods. In addition, Cytopeutics® hUC-MSCs exhibited immunomodulatory effect in a dose-dependent manner.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Humanos , Camundongos , Animais , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Transplante de Células-Tronco Mesenquimais/métodos , Camundongos SCID , Cordão Umbilical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA