Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Soft Matter ; 18(45): 8572-8581, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36373713

RESUMO

The analysis of the statistics of random walks undertaken by passive particles in complex media has important implications in a number of areas including pathogen transport and drug delivery. In several systems in which heterogeneity is important, the distribution of particle step-sizes has been found to be exponential in nature, as opposed to the Gaussian distribution associated with Brownian motion. Here, we first develop a theoretical framework to study a simplified version of this problem: the motion of passive tracers in a range of sub-environments with different viscosity. We show that in the limit of a large number of equi-distributed sub-environments spanning a broad viscosity range, an exact analytical expression for the underlying particle step-size distribution can be derived, which approaches an exponential distribution when step sizes are small. We then validate this using a simple experimental system of glycerol-water mixtures, in which the volume fraction of glycerol is systematically varied. Overall, the assumption of exponentially distributed step sizes may substantially over-estimate the incidence of large steps in heterogeneous systems, with important implications in the analysis of various biophysical processes.


Assuntos
Glicerol , Viscosidade , Probabilidade , Tamanho da Partícula , Movimento (Física)
2.
Phys Chem Chem Phys ; 24(31): 18482-18504, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35838015

RESUMO

How does a systematic time-dependence of the diffusion coefficient D(t) affect the ergodic and statistical characteristics of fractional Brownian motion (FBM)? Here, we answer this question via studying the characteristics of a set of standard statistical quantifiers relevant to single-particle-tracking (SPT) experiments. We examine, for instance, how the behavior of the ensemble- and time-averaged mean-squared displacements-denoted as the standard MSD 〈x2(Δ)〉 and TAMSD quantifiers-of FBM featuring (where H is the Hurst exponent and Δ is the [lag] time) changes in the presence of a power-law deterministically varying diffusivity Dα(t) ∝ tα-1-germane to the process of scaled Brownian motion (SBM)-determining the strength of fractional Gaussian noise. The resulting compound "scaled-fractional" Brownian motion or FBM-SBM is found to be nonergodic, with 〈x2(Δ)〉 ∝ Δα+2H-1 and . We also detect a stalling behavior of the MSDs for very subdiffusive SBM and FBM, when α + 2H - 1 < 0. The distribution of particle displacements for FBM-SBM remains Gaussian, as that for the parent processes of FBM and SBM, in the entire region of scaling exponents (0 < α < 2 and 0 < H < 1). The FBM-SBM process is aging in a manner similar to SBM. The velocity autocorrelation function (ACF) of particle increments of FBM-SBM exhibits a dip when the parent FBM process is subdiffusive. Both for sub- and superdiffusive FBM contributions to the FBM-SBM process, the SBM exponent affects the long-time decay exponent of the ACF. Applications of the FBM-SBM-amalgamated process to the analysis of SPT data are discussed. A comparative tabulated overview of recent experimental (mainly SPT) and computational datasets amenable for interpretation in terms of FBM-, SBM-, and FBM-SBM-like models of diffusion culminates the presentation. The statistical aspects of the dynamics of a wide range of biological systems is compared in the table, from nanosized beads in living cells, to chromosomal loci, to water diffusion in the brain, and, finally, to patterns of animal movements.


Assuntos
Envelhecimento , Imagem Individual de Molécula , Animais , Difusão , Movimento (Física) , Distribuição Normal
3.
Phys Chem Chem Phys ; 23(48): 27195-27206, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34821240

RESUMO

Several applications arise from the confinement of proteins on surfaces because their stability and biological activity are enhanced. It is also known that the way in which a protein adsorbs on the surface is important for its biological function since its active sites should not be obstructed. In this study, the adsorption properties of hen egg-white lysozyme, HEWL, into a negatively charged silica pore is examined by employing a coarse-grained model and constant-pH Monte Carlo simulations. The role of electrostatic interactions is taken into account via including the Debye-Hückel potentials into the Cα structure-based model. We evaluate the effects of pH, salt concentration, and pore radius on the protein preferential orientation and spatial distribution of its residues regarding the pore surface. By mapping the residues that stay closer to the pore surface, we find that the increase of pH leads to orientational changes of the adsorbed protein when the solution pH gets closer to the HEWL isoelectric point. Under these conditions, the pKa shift of these important residues caused by the adsorption into the charged confining surface results in a HEWL charge distribution that stabilizes the adsorption in the observed protein orientation. We compare our observations to the results of the pKa shift for HEWL available in the literature and to some experimental data.


Assuntos
Muramidase/química , Adsorção , Animais , Galinhas , Concentração de Íons de Hidrogênio , Modelos Moleculares , Método de Monte Carlo , Muramidase/metabolismo , Prótons
4.
Phys Chem Chem Phys ; 22(48): 27955-27965, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33073805

RESUMO

In this study we investigate, using all-atom molecular-dynamics computer simulations, the in-plane diffusion of a doxorubicin drug molecule in a thin film of water confined between two silica surfaces. We find that the molecule diffuses along the channel in the manner of a Gaussian diffusion process, but with parameters that vary according to its varying transversal position. Our analysis identifies that four Gaussians, each describing particle motion in a given transversal region, are needed to adequately describe the data. Each of these processes by itself evolves with time at a rate slower than that associated with classical Brownian motion due to a predominance of anticorrelated displacements. Long adsorption events lead to ageing, a property observed when the diffusion is intermittently hindered for periods of time with an average duration which is theoretically infinite. This study presents a simple system in which many interesting features of anomalous diffusion can be explored. It exposes the complexity of diffusion in nanoconfinement and highlights the need to develop new understanding.


Assuntos
Doxorrubicina/química , Dióxido de Silício/química , Adsorção , Difusão , Modelos Químicos , Simulação de Dinâmica Molecular
5.
Soft Matter ; 15(12): 2526-2551, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30734041

RESUMO

Native mucus is polymer-based soft-matter material of paramount biological importance. How non-Gaussian and non-ergodic is the diffusive spreading of pathogens in mucus? We study the passive, thermally driven motion of micron-sized tracers in hydrogels of mucins, the main polymeric component of mucus. We report the results of the Bayesian analysis for ranking several diffusion models for a set of tracer trajectories [C. E. Wagner et al., Biomacromolecules, 2017, 18, 3654]. The models with "diffusing diffusivity", fractional and standard Brownian motion are used. The likelihood functions and evidences of each model are computed, ranking the significance of each model for individual traces. We find that viscoelastic anomalous diffusion is often most probable, followed by Brownian motion, while the model with a diffusing diffusion coefficient is only realised rarely. Our analysis also clarifies the distribution of time-averaged displacements, correlations of scaling exponents and diffusion coefficients, and the degree of non-Gaussianity of displacements at varying pH levels. Weak ergodicity breaking is also quantified. We conclude that-consistent with the original study-diffusion of tracers in the mucin gels is most non-Gaussian and non-ergodic at low pH that corresponds to the most heterogeneous networks. Using the Bayesian approach with the nested-sampling algorithm, together with the quantitative analysis of multiple statistical measures, we report new insights into possible physical mechanisms of diffusion in mucin gels.

6.
J Chem Phys ; 150(14): 144901, 2019 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-30981236

RESUMO

We perform a detailed statistical analysis of diffusive trajectories of membrane-enclosed vesicles (vacuoles) in the supercrowded cytoplasm of living Acanthamoeba castellanii cells. From the vacuole traces recorded in the center-of-area frame of moving amoebae, we examine the statistics of the time-averaged mean-squared displacements of vacuoles, their generalized diffusion coefficients and anomalous scaling exponents, the ergodicity breaking parameter, the non-Gaussian features of displacement distributions of vacuoles, the displacement autocorrelation function, as well as the distributions of speeds and positions of vacuoles inside the amoeba cells. Our findings deliver novel insights into the internal dynamics of cellular structures in these infectious pathogens.


Assuntos
Acanthamoeba castellanii/metabolismo , Movimento , Vacúolos/metabolismo , Acanthamoeba castellanii/citologia , Acanthamoeba castellanii/fisiologia , Difusão , Modelos Teóricos
7.
Phys Chem Chem Phys ; 20(12): 7931-7946, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29333542

RESUMO

Proteins are capable of locating specific targets on DNA by employing a facilitated diffusion process with intermittent 1D and 3D search steps. Gene colocalisation and coregulation-i.e. the spatial proximity of two communicating genes-is one factor capable of accelerating the target search process along the DNA. We perform Monte Carlo computer simulations and demonstrate the benefits of gene colocalisation for minimising the search time in a model DNA-protein system. We use a simple diffusion model to mimic the search for targets by proteins, produced initially in bursts of multiple proteins and performing the first-passage search on the DNA chain. The behaviour of the mean first-passage times to the target is studied as a function of distance between the initial position of proteins and the DNA target position, as well as versus the concentration of proteins. We also examine the properties of bursty target search kinetics for varying physical-chemical protein-DNA binding affinity. Our findings underline the relevance of colocalisation of production and binding sites for protein search inside biological cells.


Assuntos
Proteínas de Ligação a DNA/química , DNA/química , Sítios de Ligação , Simulação por Computador , Difusão , Cinética , Modelos Moleculares , Método de Monte Carlo , Ligação Proteica , Termodinâmica
8.
Phys Chem Chem Phys ; 20(35): 23034-23054, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30167616

RESUMO

What is the underlying diffusion process governing the spreading dynamics and search strategies employed by amoeboid cells? Based on the statistical analysis of experimental single-cell tracking data of the two-dimensional motion of the Dictyostelium discoideum amoeboid cells, we quantify their diffusive behaviour based on a number of standard and complementary statistical indicators. We compute the ensemble- and time-averaged mean-squared displacements (MSDs) of the diffusing amoebae cells and observe a pronounced spread of short-time diffusion coefficients and anomalous MSD-scaling exponents for individual cells. The distribution functions of the cell displacements, the long-tailed distribution of instantaneous speeds, and the velocity autocorrelations are also computed. In particular, we observe a systematic superdiffusive short-time behaviour for the ensemble- and time-averaged MSDs of the amoeboid cells. Also, a clear anti-correlation of scaling exponents and generalised diffusivity values for different cells is detected. Most significantly, we demonstrate that the distribution function of the cell displacements has a strongly non-Gaussian shape and-using a rescaled spatio-temporal variable-the cell-displacement data collapse onto a universal master curve. The current analysis of single-cell motions can be implemented for quantifying diffusive behaviours in other living-matter systems, in particular, when effects of active transport, non-Gaussian displacements, and heterogeneity of the population are involved in the dynamics.


Assuntos
Dictyostelium/citologia , Simulação por Computador , Difusão , Cinética , Movimento (Física) , Análise de Célula Única
9.
Phys Chem Chem Phys ; 20(32): 20827-20848, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30066003

RESUMO

We examine renewal processes with power-law waiting time distributions (WTDs) and non-zero drift via computing analytically and by computer simulations their ensemble and time averaged spreading characteristics. All possible values of the scaling exponent α are considered for the WTD ψ(t) ∼ 1/t1+α. We treat continuous-time random walks (CTRWs) with 0 < α < 1 for which the mean waiting time diverges, and investigate the behaviour of the process for both ordinary and equilibrium CTRWs for 1 < α < 2 and α > 2. We demonstrate that in the presence of a drift CTRWs with α < 1 are ageing and non-ergodic in the sense of the non-equivalence of their ensemble and time averaged displacement characteristics in the limit of lag times much shorter than the trajectory length. In the sense of the equivalence of ensemble and time averages, CTRW processes with 1 < α < 2 are ergodic for the equilibrium and non-ergodic for the ordinary situation. Lastly, CTRW renewal processes with α > 2-both for the equilibrium and ordinary situation-are always ergodic. For the situations 1 < α < 2 and α > 2 the variance of the diffusion process, however, depends on the initial ensemble. For biased CTRWs with α > 1 we also investigate the behaviour of the ergodicity breaking parameter. In addition, we demonstrate that for biased CTRWs the Einstein relation is valid on the level of the ensemble and time averaged displacements, in the entire range of the WTD exponent α.

10.
Phys Chem Chem Phys ; 20(46): 29018-29037, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30255886

RESUMO

We employ Bayesian statistics using the nested-sampling algorithm to compare and rank multiple models of ergodic diffusion (including anomalous diffusion) as well as to assess their optimal parameters for in silico-generated and real time-series. We focus on the recently-introduced model of Brownian motion with "diffusing diffusivity"-giving rise to widely-observed non-Gaussian displacement statistics-and its comparison to Brownian and fractional Brownian motion, also for the time-series with some measurement noise. We conduct this model-assessment analysis using Bayesian statistics and the nested-sampling algorithm on the level of individual particle trajectories. We evaluate relative model probabilities and compute best-parameter sets for each diffusion model, comparing the estimated parameters to the true ones. We test the performance of the nested-sampling algorithm and its predictive power both for computer-generated (idealised) trajectories as well as for real single-particle-tracking trajectories. Our approach delivers new important insight into the objective selection of the most suitable stochastic model for a given time-series. We also present first model-ranking results in application to experimental data of tracer diffusion in polymer-based hydrogels.

11.
Phys Chem Chem Phys ; 19(28): 18338-18347, 2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28678228

RESUMO

While the dynamics of polymer chains in equilibrium media is well understood by now, the polymer dynamics in active non-equilibrium environments can be very different. Here we study the dynamics of polymers in a viscous medium containing self-propelled particles in two dimensions by using Brownian dynamics simulations. We find that the polymer center of mass exhibits a superdiffusive motion at short to intermediate times and the motion turns normal at long times, but with a greatly enhanced diffusivity. Interestingly, the long time diffusivity shows a non-monotonic behavior as a function of chain length and stiffness. We analyze how the polymer conformation and the accumulation of self-propelled particles, and therefore the directed motion of the polymer, are correlated. At the point of maximal polymer diffusivity, the polymer has preferentially bent conformations maintained by the balance between the chain elasticity and the propelling force generated by the active particles. We also consider the barrier crossing dynamics of actively-driven polymers in a double-well potential. The barrier crossing times are demonstrated to have a peculiar non-monotonic dependence, related to that of the diffusivity. This effect can be potentially utilized for sorting polymers from solutions in in vitro experiments.

12.
Phys Chem Chem Phys ; 19(34): 23397-23413, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28825753

RESUMO

How different are the properties of critical adsorption of polyampholytes and polyelectrolytes onto charged surfaces? How important are the details of polyampholyte charge distribution on the onset of critical adsorption transition? What are the scaling relations governing the dependence of critical surface charge density on salt concentration in the surrounding solution? Here, we employ Metropolis Monte Carlo simulations and uncover the scaling relations for critical adsorption for quenched periodic and random charge distributions along the polyampholyte chains. We also evaluate and discuss the dependence of the adsorbed layer width on solution salinity and details of the charge distribution. We contrast our findings to the known results for polyelectrolyte adsorption onto oppositely charged surfaces, in particular, their dependence on electrolyte concentration.

13.
Soft Matter ; 12(38): 7908-19, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27492050

RESUMO

What are the physical laws of the mutual interactions of objects bound to cell membranes, such as various membrane proteins or elongated virus particles? To rationalise this, we here investigate by extensive computer simulations mutual interactions of rod-like particles adsorbed on the surface of responsive elastic two-dimensional sheets. Specifically, we quantify sheet deformations as a response to adhesion of such filamentous particles. We demonstrate that tip-to-tip contacts of rods are favoured for relatively soft sheets, while side-by-side contacts are preferred for stiffer elastic substrates. These attractive orientation-dependent substrate-mediated interactions between the rod-like particles on responsive sheets can drive their aggregation and self-assembly. The optimal orientation of the membrane-bound rods is established via responding to the elastic energy profiles created around the particles. We unveil the phase diagramme of attractive-repulsive rod-rod interactions in the plane of their separation and mutual orientation. Applications of our results to other systems featuring membrane-associated particles are also discussed.

14.
Phys Chem Chem Phys ; 18(34): 23840-52, 2016 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-27523709

RESUMO

We investigate the ensemble and time averaged mean squared displacements for particle diffusion in a simple model for disordered media by assuming that the local diffusivity is both fluctuating in time and has a deterministic average growth or decay in time. In this study we compare computer simulations of the stochastic Langevin equation for this random diffusion process with analytical results. We explore the regimes of normal Brownian motion as well as anomalous diffusion in the sub- and superdiffusive regimes. We also consider effects of the inertial term on the particle motion. The investigation of the resulting diffusion is performed for unconfined and confined motion.

15.
PLoS Comput Biol ; 10(7): e1003698, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24992723

RESUMO

The nucleosome repeat length (NRL) is an integral chromatin property important for its biological functions. Recent experiments revealed several conflicting trends of the NRL dependence on the concentrations of histones and other architectural chromatin proteins, both in vitro and in vivo, but a systematic theoretical description of NRL as a function of DNA sequence and epigenetic determinants is currently lacking. To address this problem, we have performed an integrative biophysical and bioinformatics analysis in species ranging from yeast to frog to mouse where NRL was studied as a function of various parameters. We show that in simple eukaryotes such as yeast, a lower limit for the NRL value exists, determined by internucleosome interactions and remodeler action. For higher eukaryotes, also the upper limit exists since NRL is an increasing but saturating function of the linker histone concentration. Counterintuitively, smaller H1 variants or non-histone architectural proteins can initiate larger effects on the NRL due to entropic reasons. Furthermore, we demonstrate that different regimes of the NRL dependence on histone concentrations exist depending on whether DNA sequence-specific effects dominate over boundary effects or vice versa. We consider several classes of genomic regions with apparently different regimes of the NRL variation. As one extreme, our analysis reveals that the period of oscillations of the nucleosome density around bound RNA polymerase coincides with the period of oscillations of positioning sites of the corresponding DNA sequence. At another extreme, we show that although mouse major satellite repeats intrinsically encode well-defined nucleosome preferences, they have no unique nucleosome arrangement and can undergo a switch between two distinct types of nucleosome positioning.


Assuntos
Cromatina/química , DNA/química , Histonas/química , Nucleossomos/química , Nucleossomos/metabolismo , Animais , Anuros , Cromatina/metabolismo , Biologia Computacional , DNA/metabolismo , Histonas/metabolismo , Camundongos , Modelos Biológicos , Leveduras
16.
Soft Matter ; 11(3): 472-88, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25413029

RESUMO

The looping of polymers such as DNA is a fundamental process in the molecular biology of living cells, whose interior is characterised by a high degree of molecular crowding. We here investigate in detail the looping dynamics of flexible polymer chains in the presence of different degrees of crowding. From the analysis of the looping-unlooping rates and the looping probabilities of the chain ends we show that the presence of small crowders typically slows down the chain dynamics but larger crowders may in fact facilitate the looping. We rationalise these non-trivial and often counterintuitive effects of the crowder size on the looping kinetics in terms of an effective solution viscosity and standard excluded volume. It is shown that for small crowders the effect of an increased viscosity dominates, while for big crowders we argue that confinement effects (caging) prevail. The tradeoff between both trends can thus result in the impediment or facilitation of polymer looping, depending on the crowder size. We also examine how the crowding volume fraction, chain length, and the attraction strength of the contact groups of the polymer chain affect the looping kinetics and hairpin formation dynamics. Our results are relevant for DNA looping in the absence and presence of protein mediation, DNA hairpin formation, RNA folding, and the folding of polypeptide chains under biologically relevant high-crowding conditions.


Assuntos
DNA/química , Conformação de Ácido Nucleico , Polímeros/química , Simulação por Computador , Proteínas de Ligação a DNA/química , Difusão , Cinética , RNA/química , Viscosidade
17.
Soft Matter ; 11(22): 4430-43, 2015 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-25940939

RESUMO

What are the fundamental laws for the adsorption of charged polymers onto oppositely charged surfaces, for convex, planar, and concave geometries? This question is at the heart of surface coating applications, various complex formation phenomena, as well as in the context of cellular and viral biophysics. It has been a long-standing challenge in theoretical polymer physics; for realistic systems the quantitative understanding is however often achievable only by computer simulations. In this study, we present the findings of such extensive Monte-Carlo in silico experiments for polymer-surface adsorption in confined domains. We study the inverted critical adsorption of finite-length polyelectrolytes in three fundamental geometries: planar slit, cylindrical pore, and spherical cavity. The scaling relations extracted from simulations for the critical surface charge density σc-defining the adsorption-desorption transition-are in excellent agreement with our analytical calculations based on the ground-state analysis of the Edwards equation. In particular, we confirm the magnitude and scaling of σc for the concave interfaces versus the Debye screening length 1/κ and the extent of confinement a for these three interfaces for small κa values. For large κa the critical adsorption condition approaches the known planar limit. The transition between the two regimes takes place when the radius of surface curvature or half of the slit thickness a is of the order of 1/κ. We also rationalize how σc(κ) dependence gets modified for semi-flexible versus flexible chains under external confinement. We examine the implications of the chain length for critical adsorption-the effect often hard to tackle theoretically-putting an emphasis on polymers inside attractive spherical cavities. The applications of our findings to some biological systems are discussed, for instance the adsorption of nucleic acids onto the inner surfaces of cylindrical and spherical viral capsids.


Assuntos
Polímeros/química , Adsorção , Simulação por Computador , Método de Monte Carlo
18.
Phys Chem Chem Phys ; 17(3): 1847-58, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25474476

RESUMO

We study the diffusion of a tracer particle, which moves in continuum space between a lattice of excluded volume, immobile non-inert obstacles. In particular, we analyse how the strength of the tracer-obstacle interactions and the volume occupancy of the crowders alter the diffusive motion of the tracer. From the details of partitioning of the tracer diffusion modes between trapping states when bound to obstacles and bulk diffusion, we examine the degree of localisation of the tracer in the lattice of crowders. We study the properties of the tracer diffusion in terms of the ensemble and time averaged mean squared displacements, the trapping time distributions, the amplitude variation of the time averaged mean squared displacements, and the non-Gaussianity parameter of the diffusing tracer. We conclude that tracer-obstacle adsorption and binding triggers a transient anomalous diffusion. From a very narrow spread of recorded individual time averaged trajectories we exclude continuous type random walk processes as the underlying physical model of the tracer diffusion in our system. For moderate tracer-crowder attraction the motion is found to be fully ergodic, while at stronger attraction strength a transient disparity between ensemble and time averaged mean squared displacements occurs. We also put our results into perspective with findings from experimental single-particle tracking and simulations of the diffusion of tagged tracers in dense crowded suspensions. Our results have implications for the diffusion, transport, and spreading of chemical components in highly crowded environments inside living cells and other structured liquids.


Assuntos
Simulação por Computador , Indicadores e Reagentes/metabolismo , Modelos Biológicos , Difusão
19.
Phys Chem Chem Phys ; 17(34): 21791-8, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26252559

RESUMO

Brownian motion is ergodic in the Boltzmann-Khinchin sense that long time averages of physical observables such as the mean squared displacement provide the same information as the corresponding ensemble average, even at out-of-equilibrium conditions. This property is the fundamental prerequisite for single particle tracking and its analysis in simple liquids. We study analytically and by event-driven molecular dynamics simulations the dynamics of force-free cooling granular gases and reveal a violation of ergodicity in this Boltzmann-Khinchin sense as well as distinct ageing of the system. Such granular gases comprise materials such as dilute gases of stones, sand, various types of powders, or large molecules, and their mixtures are ubiquitous in Nature and technology, in particular in Space. We treat-depending on the physical-chemical properties of the inter-particle interaction upon their pair collisions-both a constant and a velocity-dependent (viscoelastic) restitution coefficient ε. Moreover we compare the granular gas dynamics with an effective single particle stochastic model based on an underdamped Langevin equation with time dependent diffusivity. We find that both models share the same behaviour of the ensemble mean squared displacement (MSD) and the velocity correlations in the limit of weak dissipation. Qualitatively, the reported non-ergodic behaviour is generic for granular gases with any realistic dependence of ε on the impact velocity of particles.

20.
J Chem Phys ; 142(14): 144105, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25877560

RESUMO

We study noisy heterogeneous diffusion processes with a position dependent diffusivity of the form D(x) ∼ D0|x|(α0) in the presence of annealed and quenched disorder of the environment, corresponding to an effective variation of the exponent α in time and space. In the case of annealed disorder, for which effectively α0 = α0(t), we show how the long time scaling of the ensemble mean squared displacement (MSD) and the amplitude variation of individual realizations of the time averaged MSD are affected by the disorder strength. For the case of quenched disorder, the long time behavior becomes effectively Brownian after a number of jumps between the domains of a stratified medium. In the latter situation, the averages are taken over both an ensemble of particles and different realizations of the disorder. As physical observables, we analyze in detail the ensemble and time averaged MSDs, the ergodicity breaking parameter, and higher order moments of the time averages.


Assuntos
Difusão , Estatística como Assunto , Movimento (Física)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA