Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
IEEE Trans Appl Supercond ; 1: 1, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33531792

RESUMO

Pulses of narrow line-width optical photons can be used to calibrate and test sub-2 eV full-width at halfmaximum (FWHM) energy resolution transition-edge sensor (TES) microcalorimeters at low energies (< 1 keV), where it is very challenging to obtain X-ray calibration lines comparable to (or narrower than) the detector resolution. This scheme depends on the ability to resolve the number of 3 eV photons in each pulse, which we have recently demonstrated up to photon numbers of about 300. At LTD-18 we showed preliminary results obtained with this technique on a 0.25 eV baseline resolution TES microcalorimeter designed for the ultra-high-resolution subarray of the Lynx mission. The line-shape was well described by a simple Gaussian. However, the difficulty of delivering photons to the small 46 µm square absorbers resulted in a large thermal crosstalk signal, whose random nature is expected to rapidly degrade the observed energy resolution towards higher photon numbers/energies. We have since improved the coupling between the optical fiber and the TES absorber and report here our current results.

2.
Appl Opt ; 51(15): 3046-53, 2012 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-22614609

RESUMO

The future needs of space-based, observational planetary and astronomy missions include low mass and small volume radiometric instruments that can operate in high-radiation and low-temperature environments. Here, we focus on a central spectroscopic component, the bandpass filter. We model the bandpass response of the filters to target the wavelength of the resonance peaks at 20, 40, and 60 µm and report good agreement between the modeled and measured response. We present a technique of using standard micromachining processes for semiconductor fabrication to make compact, free-standing, resonant, metal mesh filter arrays with silicon support frames. The process can be customized to include multiple detector array architectures, and the silicon frame provides lightweight mechanical support with low form factor.

3.
Phys Rev Lett ; 104(4): 047003, 2010 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-20366733

RESUMO

We have found experimentally that the critical current of a square thin-film superconducting transition-edge sensor (TES) depends exponentially upon the side length L and the square root of the temperature T, a behavior that has a natural theoretical explanation in terms of longitudinal proximity effects if the TES is regarded as a weak link between superconducting leads. As a consequence, the effective transition temperature T{c} of the TES is current dependent and at fixed current scales as 1/L{2}. We have also found that the critical current can show clear Fraunhofer-like oscillations in an applied magnetic field, similar to those found in Josephson junctions. We have observed the longitudinal proximity effect in these devices over extraordinarily long lengths up to 290 microm, 1450 times the mean-free path.

4.
J Appl Phys ; 128(17)2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33518796

RESUMO

Here we present a general algorithm for processing microcalorimeter data with special applicability to data with high photon count rates. Conventional optimal filtering, which has become ubiquitous in microcalorimeter data processing, suffers from its inability to recover overlapped pulses without sacrificing spectral resolution. The technique presented here was developed to address this particular shortcoming, and does so without imposing any assumptions beyond those made by the conventional technique. We demonstrate the algorithm's performance with a data set that approximately satisfies these assumptions, and which is representative of a wide range of microcalorimeter applications. We also apply the technique to a highly non-linear data set, examining the impact on performance in the limit that these assumptions break down.

5.
J Astron Telesc Instrum Syst ; 5(2): 021017, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33442556

RESUMO

Lynx is an x-ray telescope, one of four large satellite mission concepts currently being studied by NASA to be a flagship mission. One of Lynx's three instruments is an imaging spectrometer called the Lynx x-ray microcalorimeter (LXM), an x-ray microcalorimeter behind an x-ray optic with an angular resolution of 0.5 arc sec and ∼2 m2 of area at 1 keV. The LXM will provide unparalleled diagnostics of distant extended structures and, in particular, will allow the detailed study of the role of cosmic feedback in the evolution of the Universe. We discuss the baseline design of LXM and some parallel approaches for some of the key technologies. The baseline sensor technology uses transition-edge sensors, but we also consider an alternative approach using metallic magnetic calorimeters. We discuss the requirements for the instrument, the pixel layout, and the baseline readout design, which uses microwave superconducting quantum interference devices and high-electron mobility transistor amplifiers and the cryogenic cooling requirements and strategy for meeting these requirements. For each of these technologies, we discuss the current technology readiness level and our strategy for advancing them to be ready for flight. We also describe the current system design, including the block diagram, and our estimate for the mass, power, and data rate of the instrument.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA