Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Arch Virol ; 163(11): 2985-2995, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30054747

RESUMO

New genomic sequence data were acquired for the Acipenser iridovirus-European (AcIV-E), a virus whose complete genome and classification still remain to be elucidated. Here, we obtained the first full-length Major capsid protein (MCP) gene sequence for AcIV-E, as well as two additional open reading frames (ORFs) adjacent to the MCP gene. BLAST searches of the first ORF (α) resulted in no match to any gene or protein in the public databases. The other ORF (ß) was identified as a subunit of a replication factor C (RFC), known to function as a clamp loader in eukaryotes, archae and some viruses. The presence of similar RFC genes was confirmed in two distinct, yet related, viruses, the white sturgeon iridovirus and a European variant of Namao virus. The existence of an RFC gene in AcIV-E suggests a genome size larger than that of other classifiable members of the family Iridoviridae along with a mode of replication involving an interaction between a clamp loader and a proliferating nuclear cell antigen. Sequencing and comparison of the full-length RFC gene from various sturgeon samples infected with AcIV-E revealed two distinct clusters of sequences within one particular sample in which the coexistence of two lineages had previously been predicted based on analysis of the partial MCP gene sequence. These genetic data provide further evidence of the circulation of at least two concurrent AcIV-E lineages, sometimes co-infecting cultured European sturgeon.


Assuntos
Infecções por Vírus de DNA/veterinária , Doenças dos Peixes/virologia , Iridovirus/enzimologia , Proteína de Replicação C/metabolismo , Proteínas Virais/metabolismo , Animais , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Replicação do DNA , Infecções por Vírus de DNA/virologia , Peixes , Iridovirus/classificação , Iridovirus/genética , Iridovirus/isolamento & purificação , Fases de Leitura Aberta , Filogenia , Proteína de Replicação C/genética , Proteínas Virais/genética
2.
J Virol Methods ; 265: 105-112, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30586558

RESUMO

Acipenser iridovirus-European (AcIV-E) is an important pathogen of sturgeons. Two variants differing by single-nucleotide polymorphisms (SNP) in the Major Capsid Protein gene have been described, but without any indication as to their prevalence in farms. To facilitate epidemiological studies, we developed a high-resolution melting (HRM) assay to distinguish between two alleles (var1 and var2) differing by five point substitutions. The HRM assay detected as little as 100 copies of plasmids harboring cloned sequences of var1 and var2, which have melting temperatures (Tm) differing by only 1 °C. The assay was specific of AcIV-E as demonstrated by the absence of signal when testing a related, yet distinct, virus as well as DNA from an AcIV-E-negative sturgeon sample. Experiments with mixtures of two distinct plasmids revealed abnormal melting curve patterns, which showed dips just before the main melting peaks. These dips in the curves were interpreted as the dissociation of heteroduplexes fortuitously created during the PCR step. Screening AciV-E-positive field samples of Russian sturgeons from three farms revealed the presence of var2, based on the Tm. However, for a few samples, the melting curves showed patterns typical of var2 as the dominant viral genome, mixed with another minor variant which proved to be var1. In conclusion, HRM is a simple method to screen for AcIV-E var1 and var2 and can be used on a large scale in Europe to trace these two variants which likely represent two genetic lineages.


Assuntos
DNA Viral/genética , Doenças dos Peixes/diagnóstico , Iridovirus/classificação , Iridovirus/isolamento & purificação , Técnicas de Diagnóstico Molecular/métodos , Temperatura de Transição , Viroses/veterinária , Animais , DNA Viral/química , Europa (Continente) , Doenças dos Peixes/virologia , Peixes/virologia , Iridovirus/genética , Sensibilidade e Especificidade , Viroses/diagnóstico , Viroses/virologia
3.
Mol Cell Biol ; 24(1): 96-104, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14673146

RESUMO

Congenital heart disease is the most common form of human birth defects, yet much remains to be learned about its underlying causes. Here we report that mice lacking functional ADAM19 (mnemonic for a disintegrin and metalloprotease 19) exhibit severe defects in cardiac morphogenesis, including a ventricular septal defect (VSD), abnormal formation of the aortic and pulmonic valves, leading to valvular stenosis, and abnormalities of the cardiac vasculature. During mouse development, ADAM19 is highly expressed in the conotruncus and the endocardial cushion, structures that give rise to the affected heart valves and the membranous ventricular septum. ADAM19 is also highly expressed in osteoblast-like cells in the bone, yet it does not appear to be essential for bone growth and skeletal development. Most adam19(-/-) animals die perinatally, likely as a result of their cardiac defects. These findings raise the possibility that mutations in ADAM19 may contribute to human congenital heart valve and septal defects.


Assuntos
Sistema Cardiovascular/embriologia , Desintegrinas/metabolismo , Proteínas de Membrana/metabolismo , Metaloproteases/metabolismo , Proteínas ADAM , Animais , Western Blotting , Desenvolvimento Ósseo/fisiologia , Encéfalo/metabolismo , Pulmão/crescimento & desenvolvimento , Camundongos
4.
Methods Mol Biol ; 327: 99-113, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16780215

RESUMO

All ligands of the epidermal growth factor receptor (EGFR) are made as membrane anchored precursors that can be proteolytically processed and released from the plasma membrane. This process, which is referred to as protein ectodomain shedding, is emerging as a key regulator of the function of EGFR ligands. In light of the important roles of EGFR signaling in development and disease, it will be important to understand more about the regulation of proteolytic processing of EGFR ligands. This chapter describes a sensitive and semiquantitative method to measure ectodomain shedding of EGFR ligands that was designed to facilitate studies of this process in cells.


Assuntos
Receptores ErbB/química , Receptores ErbB/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Receptores ErbB/análise , Fibroblastos/metabolismo , Ligantes , Camundongos , Sensibilidade e Especificidade
6.
J Biol Chem ; 278(25): 22331-40, 2003 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-12682046

RESUMO

ADAMs are membrane-anchored glycoproteins with functions in fertilization, heart development, neurogenesis, and protein ectodomain shedding. Here we report an evaluation of the catalytic activity of recombinantly expressed soluble forms of ADAM19, a protein that is essential for cardiovascular morphogenesis. Proteolytic activity of soluble forms of ADAM19 was first demonstrated by their autocatalytic removal of a purification tag (Myc-His) and their ability to cleave myelin basic protein and the insulin B chain. The metalloprotease activity of ADAM19 is sensitive to the hydroxamic acid-type metalloprotease inhibitor BB94 (batimastat) but not to tissue inhibitors of metalloproteases (TIMPs) 1-3. Moreover, ADAM19 cleaves peptides corresponding to the known cleavage sites of tumor necrosis factor-alpha (TNF-alpha), TNF-related activation-induced cytokine (TRANCE, also referred to as osteoprotegerin ligand), and kit ligand-1 (KL-1) in vitro. Although ADAM19 is not required for shedding of TNFalpha and TRANCE in mouse embryonic fibroblasts, its overexpression in COS-7 cells results in strongly increased TRANCE shedding. This suggests a potential role for ADAM19 in shedding TRANCE in cells where both molecules are highly expressed, such as in osteoblasts. Interestingly, our results also indicate that ADAM19 can function as a negative regulator of KL-1 shedding in both COS-7 cells and mouse embryonic fibroblasts, instead of acting directly on KL-1. The identification of potential in vitro substrates offers the basis for further functional studies of ADAM19 in cells and in mice.


Assuntos
Desintegrinas , Proteínas de Membrana/metabolismo , Metaloendopeptidases , Metaloproteases , Proteínas Musculares/metabolismo , Proteínas ADAM , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células COS , Catálise , Linhagem Celular , Chlorocebus aethiops , Fibroblastos/citologia , Fibroblastos/metabolismo , Cinética , Proteínas de Membrana/química , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Proteínas Musculares/química , Proteínas Musculares/deficiência , Proteínas Musculares/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Spodoptera , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA