RESUMO
The tumour suppressor p16/CDKN2A and the metabolic gene, methyl-thio-adenosine phosphorylase (MTAP), are frequently co-deleted in some of the most aggressive and currently untreatable cancers. Cells with MTAP deletion are vulnerable to inhibition of the metabolic enzyme, methionine-adenosyl transferase 2A (MAT2A), and the protein arginine methyl transferase (PRMT5). This synthetic lethality has paved the way for the rapid development of drugs targeting the MAT2A/PRMT5 axis. MAT2A and its liver- and pancreas-specific isoform, MAT1A, generate the universal methyl donor S-adenosylmethionine (SAM) from ATP and methionine. Given the pleiotropic role SAM plays in methylation of diverse substrates, characterising the extent of SAM depletion and downstream perturbations following MAT2A/MAT1A inhibition (MATi) is critical for safety assessment. We have assessed in vivo target engagement and the resultant systemic phenotype using multi-omic tools to characterise response to a MAT2A inhibitor (AZ'9567). We observed significant SAM depletion and extensive methionine accumulation in the plasma, liver, brain and heart of treated rats, providing the first assessment of both global SAM depletion and evidence of hepatic MAT1A target engagement. An integrative analysis of multi-omic data from liver tissue identified broad perturbations in pathways covering one-carbon metabolism, trans-sulfuration and lipid metabolism. We infer that these pathway-wide perturbations represent adaptive responses to SAM depletion and confer a risk of oxidative stress, hepatic steatosis and an associated disturbance in plasma and cellular lipid homeostasis. The alterations also explain the dramatic increase in plasma and tissue methionine, which could be used as a safety and PD biomarker going forward to the clinic.
Assuntos
Metionina Adenosiltransferase , S-Adenosilmetionina , Animais , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo , S-Adenosilmetionina/metabolismo , Masculino , Fígado/efeitos dos fármacos , Fígado/metabolismo , Ratos , Metionina/metabolismo , Ratos Sprague-Dawley , Purina-Núcleosídeo Fosforilase/metabolismo , Purina-Núcleosídeo Fosforilase/genética , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , MultiômicaRESUMO
BACKGROUND: BRAF mutation is associated with poor clinical outcome of patients with malignant tumours, and mediates resistance to chemotherapy and targeted therapy. This study aimed to determine whether V600E mutant and wild type BRAF colorectal cancers exhibit distinct sensitivities to the dual BRAF inhibitor AZ304. METHODS: Kinase activity was assessed by the AlphaScreen assay. Then, MTT assay, EdU assay, colony-formation assay and Western blot were performed to evaluate the anti-tumour effects of AZ304 in vitro. In vivo efficacy was investigated by xenograft analysis and immunohistochemistry. RESULTS: AZ304 exerted potent inhibitory effects on both wild type and V600E mutant forms of the serine/threonine-protein kinase BRAF, with IC50 values of 79 nM and 38 nM, respectively. By suppressing ERK phosphorylation, AZ304 effectively inhibited a panel of human cancer cell lines with different BRAF and RAS genetic statuses. In selected colorectal cancer cell lines, AZ304 significantly inhibited cell growth in vitro and in vivo, regardless of BRAF genetic status. In addition, the EGFR inhibitor Cetuximab enhanced the potency of AZ304 independently of BRAF mutational status. CONCLUSIONS: The BRAF inhibitor AZ304 has broad spectrum antitumour activity, which is significantly enhanced by combination with Cetuximab in colorectal cancers in vitro and in vivo.
Assuntos
Cetuximab/administração & dosagem , Neoplasias Colorretais/tratamento farmacológico , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Inibidores de Proteínas Quinases/administração & dosagem , Proteínas Proto-Oncogênicas B-raf/genética , Animais , Células CACO-2 , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cetuximab/farmacologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Sinergismo Farmacológico , Feminino , Células HT29 , Humanos , Camundongos , Mutação , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas ras/genéticaRESUMO
Bfl-1, a member of the Bcl-2 family of proteins, plays a crucial role in apoptosis regulation and has been implicated in cancer cell survival and resistance to venetoclax therapy. Due to the unique cysteine residue in the BH3 binding site, the development of covalent inhibitors targeting Bfl-1 represents a promising strategy for cancer treatment. Herein, the optimization of a covalent cellular tool from a lead-like hit using structure based design is described. Informed by a reversible X-ray fragment screen, the strategy to establish interactions with a key glutamic acid residue (Glu78) and optimize binding in a cryptic pocket led to a 1000-fold improvement in biochemical potency without increasing reactivity of the warhead. Compound (R,R,S)-26 has a kinact/KI of 4600 M-1 s-1, shows <1 µM caspase activation in a cellular assay and cellular target engagement, and has good physicochemical properties and a promising in vivo profile.
Assuntos
Proteínas Proto-Oncogênicas c-bcl-2 , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Relação Estrutura-Atividade , Animais , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Modelos Moleculares , Cristalografia por Raios X , Camundongos , Estrutura Molecular , Apoptose/efeitos dos fármacos , Antígenos de Histocompatibilidade MenorRESUMO
Activating mutations in PIK3CA are frequently found in estrogen-receptor-positive (ER+) breast cancer, and the combination of the phosphatidylinositol 3-kinase (PI3K) inhibitor alpelisib with anti-ER inhibitors is approved for therapy. We have previously demonstrated that the PI3K pathway regulates ER activity through phosphorylation of the chromatin modifier KMT2D. Here, we discovered a methylation site on KMT2D, at K1330 directly adjacent to S1331, catalyzed by the lysine methyltransferase SMYD2. SMYD2 loss attenuates alpelisib-induced KMT2D chromatin binding and alpelisib-mediated changes in gene expression, including ER-dependent transcription. Knockdown or pharmacological inhibition of SMYD2 sensitizes breast cancer cells, patient-derived organoids, and tumors to PI3K/AKT inhibition and endocrine therapy in part through KMT2D K1330 methylation. Together, our findings uncover a regulatory crosstalk between post-translational modifications that fine-tunes KMT2D function at the chromatin. This provides a rationale for the use of SMYD2 inhibitors in combination with PI3Kα/AKT inhibitors in the treatment of ER+/PIK3CA mutant breast cancer.
Assuntos
Neoplasias da Mama , Cromatina , Histona-Lisina N-Metiltransferase , Humanos , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Neoplasias da Mama/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Metilação/efeitos dos fármacos , Linhagem Celular Tumoral , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Receptores de Estrogênio/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacosRESUMO
The optimization of an allosteric fragment, discovered by differential scanning fluorimetry, to an in vivo MAT2a tool inhibitor is discussed. The structure-based drug discovery approach, aided by relative binding free energy calculations, resulted in AZ'9567 (21), a potent inhibitor in vitro with excellent preclinical pharmacokinetic properties. This tool showed a selective antiproliferative effect on methylthioadenosine phosphorylase (MTAP) KO cells, both in vitro and in vivo, providing further evidence to support the utility of MAT2a inhibitors as potential anticancer therapies for MTAP-deficient tumors.
Assuntos
Neoplasias , Humanos , Entropia , Metionina Adenosiltransferase/metabolismoRESUMO
Recent clinical reports have highlighted the need for wild-type (WT) and mutant dual inhibitors of c-MET kinase for the treatment of cancer. We report herein a novel chemical series of ATP competitive type-III inhibitors of WT and D1228V mutant c-MET. Using a combination of structure-based drug design and computational analyses, ligand 2 was optimized to a highly selective chemical series with nanomolar activities in biochemical and cellular settings. Representatives of the series demonstrate excellent pharmacokinetic profiles in rat in vivo studies with promising free-brain exposures, paving the way for the design of brain permeable drugs for the treatment of c-MET driven cancers.
Assuntos
Antineoplásicos , Neoplasias , Ratos , Animais , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met , Desenho de Fármacos , Trifosfato de Adenosina , Antineoplásicos/farmacologiaRESUMO
SET and MYND domain-containing protein 2 (SMYD2) is a protein lysine methyltransferase that catalyzes the transfer of methyl groups from S-adenosylmethionine (AdoMet) to acceptor lysine residues on histones and other proteins. To understand the kinetic mechanism and the function of individual domains, human SMYD2 was overexpressed, purified, and characterized. Substrate specificity and product analysis studies established SMYD2 as a monomethyltransferase that prefers nonmethylated p53 peptide substrate. Steady-state kinetic and product inhibition studies showed that SMYD2 operates via a rapid equilibrium random Bi Bi mechanism at a rate of 0.048 ± 0.001 s(-1), with K(M)s for AdoMet and the p53 peptide of 0.031 ± 0.01 µM and 0.68 ± 0.22 µM, respectively. Metal analyses revealed that SMYD2 contains three tightly bound zinc ions that are important for maintaining the structural integrity and catalytic activity of SMYD2. Catalytic activity was also shown to be dependent on the GxG motif in the S-sequence of the split SET domain, as a G18A/G20A double mutant and a sequence deletion within the conserved motif impaired AdoMet binding and significantly decreased enzymatic activity. The functional importance of other SMYD2 domains including the MYND domain, the cysteine-rich post-SET domain, and the C-terminal domain (CTD), were also investigated. Taken together, these results demonstrated the functional importance of distinct domains in the SMYD family of proteins and further advanced our understanding of the catalytic mechanism of this family.
Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Motivos de Aminoácidos , Biocatálise , Sequência Conservada , Cristalografia por Raios X , Histona-Lisina N-Metiltransferase/química , Humanos , Concentração de Íons de Hidrogênio , Cinética , Metilação , Modelos Moleculares , Peptídeos/metabolismo , Estrutura Terciária de Proteína , Especificidade por Substrato , Proteína Supressora de Tumor p53/metabolismo , Zinco/metabolismoRESUMO
MAT2a is a methionine adenosyltransferase that synthesizes the essential metabolite S-adenosylmethionine (SAM) from methionine and ATP. Tumors bearing the co-deletion of p16 and MTAP genes have been shown to be sensitive to MAT2a inhibition, making it an attractive target for treatment of MTAP-deleted cancers. A fragment-based lead generation campaign identified weak but efficient hits binding in a known allosteric site. By use of structure-guided design and systematic SAR exploration, the hits were elaborated through a merging and growing strategy into an arylquinazolinone series of potent MAT2a inhibitors. The selected in vivo tool compound 28 reduced SAM-dependent methylation events in cells and inhibited proliferation of MTAP-null cells in vitro. In vivo studies showed that 28 was able to induce antitumor response in an MTAP knockout HCT116 xenograft model.
Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/química , Metionina Adenosiltransferase/antagonistas & inibidores , Sítio Alostérico , Animais , Proliferação de Células , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Técnicas de Inativação de Genes , Células HCT116 , Meia-Vida , Humanos , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo , Camundongos , Simulação de Dinâmica Molecular , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Quinazolinas/química , Quinazolinas/metabolismo , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , Ratos , S-Adenosilmetionina/metabolismo , Relação Estrutura-Atividade , Transplante HeterólogoRESUMO
Programmed Cell Death Receptor (PD-1) and its Ligand (PD-L1) pathway inhibitor therapy has been explored in the field of oncology treatment mainly for solid tumors. In hematologic malignancies, there is limited information except for Hodgkin's lymphoma, and there is even less information regarding myeloproliferative neoplasm (MPN). Therefore, we explored this by first measuring PD-1 and PD-L1 levels (percentage of positive cells) in 63 patients with Philadelphia chromosome-negative MPN (Ph(-) MPN), including 16 MF (12 PMF, 2 post-PV-MF, 2 post-ET-MF), 29 ET, and 18 PV. We found there was no significant difference in PD-1 or PD-L1 levels between the different MPN groups but that there was a significant difference when PV, ET and MF were grouped as MPN and compared with controls, of all immune cells including CD4+, CD8+, CD14+ and CD34+ progenitor cells. We further found a higher incidence of higher expression levels (more than 50% of cells with positive expression) of PD-1 and PD-L1 (20% and 26%, respectively) in the CD34+ cells; in contrast, we found a low incidence (0.08-1.8%) in the immune cells in MPN patients. PD-1 and PD-L1 levels were also measured by MFI methods, and we obtained similar results except the measurements by percentage appeared to be more sensitive than the MFI methods. We found no correlation between PD-1 and PD-L1 expression levels and clinical features including WBC, platelet counts, hemoglobin levels, presence or absence of the JAK2, MPL, or CALR gene mutation, or splenomegaly. Since MPN represents stem cell disorders, the presence of elevated expression of PD-1 and PD-L1 in these cells suggests that the exploration of PD-1 and PD-L1 pathway inhibitor therapy may be worthwhile in Ph(-) MPN.
Assuntos
Antígeno B7-H1/genética , Neoplasias Hematológicas/genética , Transtornos Mieloproliferativos/genética , Receptor de Morte Celular Programada 1/genética , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Regulação Neoplásica da Expressão Gênica , Neoplasias Hematológicas/patologia , Humanos , Janus Quinase 2/genética , Masculino , Pessoa de Meia-Idade , Mutação , Transtornos Mieloproliferativos/patologia , Cromossomo FiladélfiaRESUMO
Many small molecule inhibitors of the cMET receptor tyrosine kinase have been evaluated in clinical trials for the treatment of cancer and resistance-conferring mutations of cMET are beginning to be reported for a number of such compounds. There is now a need to understand specific cMET mutations at the molecular level, particularly concerning small molecule recognition. Toward this end, we report here the first crystal structures of the recent clinically observed resistance-conferring D1228V cMET mutant in complex with small molecule inhibitors, along with a crystal structure of wild-type cMET bound by the clinical compound savolitinib and supporting cellular, biochemical, and biophysical data. Our findings indicate that the D1228V alteration induces conformational changes in the kinase, which could have implications for small molecule inhibitor design. The data we report here increases our molecular understanding of the D1228V cMET mutation and provides insight for future inhibitor design.
RESUMO
Enhancer of zeste homologue 2 (EZH2), the catalytic subunit of polycomb repressive complex 2 (PRC2), regulates chromatin state and gene expression by methylating histone H3 lysine 27. EZH2 is overexpressed or mutated in various hematological malignancies and solid cancers. Our previous efforts to identify inhibitors of PRC2 methyltransferase activity by high-throughput screening (HTS) resulted in large numbers of false positives and thus a significant hit deconvolution challenge. More recently, others have reported compounds that bind to another PRC2 core subunit, EED, and allosterically inhibit EZH2 activity. This mechanism is particularly appealing as it appears to retain potency in cell lines that have acquired resistance to orthosteric EZH2 inhibition. By designing a fluorescence polarization probe based on the reported EED binding compounds, we were able to quickly and cleanly re-triage our previously challenging HTS hit list and identify novel allosteric PRC2 inhibitors.
Assuntos
Benzofuranos/química , Inibidores Enzimáticos/química , Complexo Repressor Polycomb 2/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/química , Regulação Alostérica/efeitos dos fármacos , Benzofuranos/metabolismo , Carbocianinas/química , Linhagem Celular Tumoral , Inibidores Enzimáticos/metabolismo , Corantes Fluorescentes/química , Ensaios de Triagem em Larga Escala , Humanos , Ligantes , Complexo Repressor Polycomb 2/isolamento & purificação , Complexo Repressor Polycomb 2/metabolismo , Ligação Proteica , Bibliotecas de Moléculas Pequenas/metabolismoRESUMO
Isoprenylcysteine carboxyl methyltransferase (Icmt) is enzyme target in anticancer drug discovery. An Icmt natural product high-throughput screening campaign was conducted and a hit extract from the roots of Hovea parvicalyx was identified. 2'-Methoxy-3'-prenyl-licodione and 2'-methoxy-3',3''-diprenyl-licodione, two prenylated beta-hydroxychalcone compounds, together with the known flavanone (S)-glabrol, were isolated and identified as bioactive constituents. Their structures were determined largely by 1D and 2D NMR spectroscopy.
Assuntos
Antineoplásicos/química , Inibidores Enzimáticos/química , Fabaceae/química , Proteínas Metiltransferases/antagonistas & inibidores , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Proteínas Metiltransferases/metabolismoRESUMO
The anticancer target isoprenylcysteine carboxyl methyltransferase (Icmt) was the focus of a natural product high-throughput screening campaign. The Australian marine sponge Pseudoceratina sp. yielded aplysamine 6, a new bromotyrosine derivative with an alpha,beta-unsaturated amide linkage, as the bioactive constituent. Its structure was determined by 1D and 2D NMR spectroscopy.
Assuntos
Poríferos/química , Proteínas Metiltransferases/antagonistas & inibidores , Tirosina/análogos & derivados , Animais , Austrália , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Tirosina/química , Tirosina/isolamento & purificação , Tirosina/farmacologiaRESUMO
INTRODUCTION: Tension-free mesh repair is currently the gold standard treatment for inguinal hernia. Recent evidence has shown that both open and laparoscopic approaches to inguinal hernia repair can achieve good results. Lots of meshes with different properties are available on the market, but direct comparisons between them are scare. We conducted a prospective randomized controlled trial comparing a partially absorbable lightweight mesh (ULTRAPRO™) and a multifilament polyester anatomical mesh (Parietex™) in laparoscopic total extraperitoneal inguinal hernia repair. METHODS: This study was a single-center, prospective randomized controlled trial to compare the surgical handling and clinical outcomes between two different types of meshes. All operations were performed using a standardized operative protocol. This study was approved by the Institutional Review Board of the Hong Kong East Cluster Health Service in 2009 (reference number: 2009-087). The study was registered in the Australian New Zealand Clinical Trial Registry (ACTRN12610000031066). RESULTS: From October 2009 to August 2011, 85 laparoscopic total extraperitoneal inguinal hernia repairs were performed. The mean mesh handling time was 152 s for the ULTRAPRO group and 206 s for the Parietex group (P = 0.001). There were three cases of seroma formation in the ULTRAPRO group and nine in the Parietex group (P = 0.02). The overall recurrence rate was 2.5%. CONCLUSION: It took less time to manipulate the flat mesh (ULTRAPRO) than the anatomical mesh (Parietex) in laparoscopic total extraperitoneal inguinal hernia repair, but the time difference was small. Lightweight mesh and heavyweight mesh offered similar clinical outcomes in terms of discomfort sensation and foreign body sensation during long-term follow-up.
Assuntos
Colágeno , Hérnia Inguinal/cirurgia , Herniorrafia/instrumentação , Laparoscopia , Poliésteres , Telas Cirúrgicas , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Seguimentos , Herniorrafia/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Método Simples-Cego , Resultado do TratamentoRESUMO
: PARP proteins represent a class of post-translational modification enzymes with diverse cellular functions. Targeting PARPs has proven to be efficacious clinically, but exploration of the therapeutic potential of PARP inhibition has been limited to targeting poly(ADP-ribose) generating PARP, including PARP1/2/3 and tankyrases. The cancer-related functions of mono(ADP-ribose) generating PARP, including PARP6, remain largely uncharacterized. Here, we report a novel therapeutic strategy targeting PARP6 using the first reported PARP6 inhibitors. By screening a collection of PARP compounds for their ability to induce mitotic defects, we uncovered a robust correlation between PARP6 inhibition and induction of multipolar spindle (MPS) formation, which was phenocopied by PARP6 knockdown. Treatment with AZ0108, a PARP6 inhibitor with a favorable pharmacokinetic profile, potently induced the MPS phenotype, leading to apoptosis in a subset of breast cancer cells in vitro and antitumor effects in vivo. In addition, Chk1 was identified as a specific substrate of PARP6 and was further confirmed by enzymatic assays and by mass spectrometry. Furthermore, when modification of Chk1 was inhibited with AZ0108 in breast cancer cells, we observed marked upregulation of p-S345 Chk1 accompanied by defects in mitotic signaling. Together, these results establish proof-of-concept antitumor efficacy through PARP6 inhibition and highlight a novel function of PARP6 in maintaining centrosome integrity via direct ADP-ribosylation of Chk1 and modulation of its activity. SIGNIFICANCE: These findings describe a new inhibitor of PARP6 and identify a novel function of PARP6 in regulating activation of Chk1 in breast cancer cells.
Assuntos
ADP Ribose Transferases/antagonistas & inibidores , Neoplasias da Mama/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/metabolismo , Animais , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinase 1 do Ponto de Checagem/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Inibidores de Poli(ADP-Ribose) Polimerases/química , Transdução de Sinais/efeitos dos fármacos , Especificidade por Substrato , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
B-cell lymphoma 6 (BCL6) inhibition is a promising mechanism for treating hematological cancers but high quality chemical probes are necessary to evaluate its therapeutic potential. Here we report potent BCL6 inhibitors that demonstrate cellular target engagement and exhibit exquisite selectivity for BCL6 based on mass spectrometry analyses following chemical proteomic pull down. Importantly, a proteolysis-targeting chimera (PROTAC) was also developed and shown to significantly degrade BCL6 in a number of diffuse large B-cell lymphoma (DLBCL) cell lines, but neither BCL6 inhibition nor degradation selectively induced marked phenotypic response. To investigate, we monitored PROTAC directed BCL6 degradation in DLBCL OCI-Ly1 cells by immunofluorescence and discovered a residual BCL6 population. Analysis of subcellular fractions also showed incomplete BCL6 degradation in all fractions despite having measurable PROTAC concentrations, together providing a rationale for the weak antiproliferative response seen with both BCL6 inhibitor and degrader. In summary, we have developed potent and selective BCL6 inhibitors and a BCL6 PROTAC that effectively degraded BCL6, but both modalities failed to induce a significant phenotypic response in DLBCL despite achieving cellular concentrations.
Assuntos
Antineoplásicos/farmacologia , Proteínas Proto-Oncogênicas c-bcl-6/antagonistas & inibidores , Quinolonas/farmacologia , Talidomida/análogos & derivados , Talidomida/farmacologia , Proteínas Adaptadoras de Transdução de Sinal , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Células HEK293 , Humanos , Ligantes , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Peptídeo Hidrolases/metabolismo , Ligação Proteica , Proteólise , Proteínas Proto-Oncogênicas c-bcl-6/química , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Quinolonas/síntese química , Quinolonas/metabolismo , Talidomida/síntese química , Talidomida/metabolismo , Ubiquitina-Proteína Ligases/metabolismoRESUMO
Inhibition of the protein-protein interaction between B-cell lymphoma 6 (BCL6) and corepressors has been implicated as a therapeutic target in diffuse large B-cell lymphoma (DLBCL) cancers and profiling of potent and selective BCL6 inhibitors are critical to test this hypothesis. We identified a pyrazolo[1,5-a]pyrimidine series of BCL6 binders from a fragment screen in parallel with a virtual screen. Using structure-based drug design, binding affinity was increased 100000-fold. This involved displacing crystallographic water, forming new ligand-protein interactions and a macrocyclization to favor the bioactive conformation of the ligands. Optimization for slow off-rate constant kinetics was conducted as well as improving selectivity against an off-target kinase, CK2. Potency in a cellular BCL6 assay was further optimized to afford highly selective probe molecules. Only weak antiproliferative effects were observed across a number of DLBCL lines and a multiple myeloma cell line without a clear relationship to BCL6 potency. As a result, we conclude that the BCL6 hypothesis in DLBCL cancer remains unproven.
Assuntos
Mapas de Interação de Proteínas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Pirazóis/química , Pirazóis/farmacologia , Piridinas/química , Piridinas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Humanos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas c-bcl-6/antagonistas & inibidoresRESUMO
Protein lysine methyltransferases (KMTs) have emerged as important regulators of epigenetic signaling. These enzymes catalyze the transfer of donor methyl groups from the cofactor S-adenosylmethionine to specific acceptor lysine residues on histones, leading to changes in chromatin structure and transcriptional regulation. These enzymes also methylate an array of nonhistone proteins, suggesting additional mechanisms by which they influence cellular physiology. SMYD2 is reported to be an oncogenic methyltransferase that represses the functional activity of the tumor suppressor proteins p53 and RB. HTS screening led to identification of five distinct substrate-competitive chemical series. Determination of liganded crystal structures of SMYD2 contributed significantly to "hit-to-lead" design efforts, culminating in the creation of potent and selective inhibitors that were used to understand the functional consequences of SMYD2 inhibition. Taken together, these results have broad implications for inhibitor design against KMTs and clearly demonstrate the potential for developing novel therapies against these enzymes.
Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Células HCT116 , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Estrutura Molecular , Relação Estrutura-AtividadeRESUMO
The bromodomain and extraterminal (BET) protein BRD4 regulates gene expression via recruitment of transcriptional regulatory complexes to acetylated chromatin. Pharmacological targeting of BRD4 bromodomains by small molecule inhibitors has proven to be an effective means to disrupt aberrant transcriptional programs critical for tumor growth and/or survival. Herein, we report AZD5153, a potent, selective, and orally available BET/BRD4 bromodomain inhibitor possessing a bivalent binding mode. Unlike previously described monovalent inhibitors, AZD5153 ligates two bromodomains in BRD4 simultaneously. The enhanced avidity afforded through bivalent binding translates into increased cellular and antitumor activity in preclinical hematologic tumor models. In vivo administration of AZD5153 led to tumor stasis or regression in multiple xenograft models of acute myeloid leukemia, multiple myeloma, and diffuse large B-cell lymphoma. The relationship between AZD5153 exposure and efficacy suggests that prolonged BRD4 target coverage is a primary efficacy driver. AZD5153 treatment markedly affects transcriptional programs of MYC, E2F, and mTOR. Of note, mTOR pathway modulation is associated with cell line sensitivity to AZD5153. Transcriptional modulation of MYC and HEXIM1 was confirmed in AZD5153-treated human whole blood, thus supporting their use as clinical pharmacodynamic biomarkers. This study establishes AZD5153 as a highly potent, orally available BET/BRD4 inhibitor and provides a rationale for clinical development in hematologic malignancies. Mol Cancer Ther; 15(11); 2563-74. ©2016 AACR.