RESUMO
The two invasive blue crabs, Callinectes sapidus and Portunus segnis have spread rapidly in the Mediterranean and no data exists on the connectivity of populations. Determining the source and recruitment areas is crucial to prioritize where population control measures should be put into immediate action. We simulated the dispersal of blue crab larvae using a Lagrangian model coupled at high resolution to estimate the potential connectivity of blue crab populations over a 3-year period. Our results reveal that the main areas at risk are the Spanish, French, Italian Tyrrhenian and Sardinian coasts for Callinectes sapidus with high populations connectivity. Tunisia and Egypt represent high auto recruitment zones for Portunus segnis restricted to the central and western basins. This study provides an overview of the connectivity between populations and will help define priority areas that require the urgent implementation of management measures.
Assuntos
Braquiúros , Animais , Itália , Larva , Mar Mediterrâneo , TunísiaRESUMO
This paper analyzes the variability of microplastics vertical distributions in the oceanic water column. Data were obtained from targeted sampling in the Bay of Marseille (France) and from a numerical simulation forced by realistic physical forcings. By fitting model and in-situ data in a simplified vertical dimension, three microplastics classes may be deduced: settling, buoyant and winter neutrally-buoyant microplastics. Buoyant microplastics are mainly concentrated at the surface but they can be mixed throughout the whole water column during episodes with strong winds and no water stratification, inducing an implicit underestimation of buoyant microplastics in surface sampling. Almost symmetrical to the distribution of buoyant microplastics, settling microplastics are mainly found at the bottom but they can sometimes reach the surface under the mixing conditions cited above. They could thus contribute to surface sampling. Winter neutrally-buoyant microplastics are more homogenously mixed during the winter but are under the stratified layers during summer.
Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Estações do Ano , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodosRESUMO
This paper looks at experiential feedback and the technical and scientific challenges tied to the MERITE-HIPPOCAMPE cruise that took place in the Mediterranean Sea in spring 2019. This cruise proposes an innovative approach to investigate the accumulation and transfer of inorganic and organic contaminants within the planktonic food webs. We present detailed information on how the cruise worked, including 1) the cruise track and sampling stations, 2) the overall strategy, based mainly on the collection of plankton, suspended particles and water at the deep chlorophyll maximum, and the separation of these particles and planktonic organisms into various size fractions, as well as the collection of atmospheric deposition, 3) the operations performed and material used at each station, and 4) the sequence of operations and main parameters analysed. The paper also provides the main environmental conditions that were prevailing during the campaign. Lastly, we present the types of articles produced based on work completed by the cruise that are part of this special issue.
Assuntos
Cadeia Alimentar , Plâncton , Mar Mediterrâneo , Estações do Ano , OceanografiaRESUMO
Since 2011, huge amounts of Sargassum algae are detected in the equatorial Atlantic, causing large strandings events on the coasts of the West Indies, Brazil and West Africa. The distribution of this stock shows strong annual and interannual variability, whose drivers are not settled yet. Here we use satellite Sargassum observations from MODIS and currents from an ocean reanalysis to simulate the passive transport of algae in 2017. Wind effect was necessary to fit the observed distribution. Simulations reasonably reproduce the satellite monthly distribution for up to seven months, confirming the prominent role of transport in the distribution cycle. Annual cycle appears as a zonal exchange between eastern (EAR) and western accumulation regions (WAR). EAR is well explained by advection alone, with sharp meridional distribution controlled by converging currents below the inter-tropical Convergence Zone. Instead, WAR is not explained by advection alone, suggesting local growth.
Assuntos
Sargassum , Oceano Atlântico , Brasil , Índias Ocidentais , VentoRESUMO
Historically, pelagic Sargassum were only found in the Sargasso Sea. Since 2011, blooms were regularly observed in warmer water, further south. Their developments in Central Atlantic are associated with mass strandings on the coasts, causing important damages and potentially dispersion of new bacteria. Microbiomes associated with pelagic Sargassum were analysed at large scale in Central Atlantic and near Caribbean Islands with a focus on pathogenic bacteria. Vibrio appeared widely distributed among pelagic Sargassum microbiome of our samples with higher occurrence than previously found in Mexico Gulf. Six out the 16 Vibrio-OTUs (Operational Taxonomic Unit), representing 81.2 ± 13.1% of the sequences, felt in cluster containing pathogens. Among the four different microbial profiles of pelagic Sargassum microbiome, Vibrio attained about 2% in two profiles whereas it peaked, in the two others, at 6.5 and 26.8% respectively, largely above the concentrations found in seawater surrounding raft (0.5%). In addition to sampling and measurements, we performed backward Lagrangian modelling of trajectories of rafts, and rebuilt the sampled rafts environmental history allowing us to estimate Sargassum growth rates along raft displacements. We found that Vibrio was favoured by high Sargassum growth rate and in situ ammonium and nitrite, modelled phosphate and nitrate concentrations, whereas zooplankters, benthic copepods, and calm wind (proxy of raft buoyancy near the sea surface) were less favourable for them. Relations between Vibrio and other main bacterial groups identified a competition with Alteromonas. According to forward Lagrangian tracking, part of rafts containing Vibrio could strand on the Caribbean coasts, however the strong decreases of modelled Sargassum growth rates along this displacement suggest unfavourable environment for Vibrio. For the conditions and areas observed, the sanitary risk seemed in consequence minor, but in other areas or conditions where high Sargassum growth rate occurred near coasts, it could be more important.
Assuntos
Microbiota , Sargassum , Vibrio , Animais , Região do Caribe , México , Água do Mar , Índias OcidentaisRESUMO
The present study reports on observations carried out in the Tropical North Atlantic in summer and autumn 2017, documenting Sargassum aggregations using both ship-deck observations and satellite sensor observations at three resolutions (MSI-10 m, OLCI-300 m, VIIRS-750 m and MODIS-1 km). Both datasets reported that in summer, Sargassum aggregations were mainly observed off Brazil and near the Caribbean Islands, while they accumulated near the African coast in autumn. Based on in situ observations, we propose a five-class typology allowing standardisation of the description of in situ Sargassum raft shapes and sizes. The most commonly observed Sargassum raft type was windrows, but large rafts composed of a quasi-circular patch hundreds of meters wide were also observed. Satellite imagery showed that these rafts formed larger Sargassum aggregations over a wide range of scales, with smaller aggregations (of tens of m2 area) nested within larger ones (of hundreds of km2). Match-ups between different satellite sensors and in situ observations were limited for this dataset, mainly because of high cloud cover during the periods of observation. Nevertheless, comparisons between the two datasets showed that satellite sensors successfully detected Sargassum abundance and aggregation patterns consistent with in situ observations. MODIS and VIIRS sensors were better suited to describing the Sargassum aggregation distribution and dynamics at Atlantic scale, while the new sensors, OLCI and MSI, proved their ability to detect Sargassum aggregations and to describe their (sub-) mesoscale nested structure. The high variability in raft shape, size, thickness, depth and biomass density observed in situ means that caution is called for when using satellite maps of Sargassum distribution and biomass estimation. Improvements would require additional in situ and airborne observations or very high-resolution satellite imagery.
Assuntos
Sargassum/crescimento & desenvolvimento , Oceano Atlântico , Biomassa , Brasil , Imagens de Satélites/métodos , Estações do Ano , Índias OcidentaisRESUMO
A 3D coupled physical-biogeochemical model is developed and applied to Bizerte Lagoon (Tunisia), in order to understand and quantitatively assess its hydrobiological functioning and nutrients budget. The biogeochemical module accounts for nitrogen and phosphorus and includes the water column and upper sediment layer. The simulations showed that water circulation and the seasonal patterns of nutrients, phytoplankton and dissolved oxygen were satisfactorily reproduced. Model results indicate that water circulation in the lagoon is driven mainly by tide and wind. Plankton primary production is co-limited by phosphorus and nitrogen, and is highest in the inner part of the lagoon, due to the combined effects of high water residence time and high nutrient inputs from the boundary. However, a sensitivity analysis highlights the importance of exchanges with the Mediterranean Sea in maintaining a high level of productivity. Intensive use of fertilizers in the catchment area has a significant effect on phytoplankton biomass increase.
Assuntos
Monitoramento Ambiental , Modelos Teóricos , Fitoplâncton , Água do Mar/química , Biomassa , Mar Mediterrâneo , Nitrogênio/análise , Oxigênio/análise , Fósforo/análise , Plâncton , Estações do Ano , Água do Mar/microbiologia , Tunísia , Água/análise , Poluição da Água/análise , Poluição da Água/estatística & dados numéricosRESUMO
This study describes the changes in hydrology, zooplankton communities and abundance in the Senegal River Estuary (SRE) before and after the breaching of the sandbar in October 2003. Samples were taken in 2003 at 3 stations located upstream (DI), in mid estuary (HY) and downstream (RM), and in 2005 at the same stations (RM becoming Old River Mouth: ORM), plus the new river mouth (NRM) resulting from the morphological evolution of the SRE. The study showed marked seasonal variations that affected the structure and distribution of zooplankton as well as major changes caused by the sandbar opening: increased marine influence throughout the whole SRE, changes in the horizontal gradients, arrival of euryhaline species and increase in meroplankton, in particular decapod larvae, transformation of the ORM area into a slackwater area with limited exchanges and the highest zooplankton numbers during high waters.