Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 569(7758): 703-707, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31022719

RESUMO

The presence of a quaternary centre-a carbon with four other carbons bonded to it-in any given molecule can have a substantial chemical and biological impact. In many cases, it can enable otherwise challenging chemistry. For example, quaternary centres induce large rate enhancements in cyclization reactions-known as the Thorpe-Ingold effect-which has application in drug delivery for molecules with modest bioavailability1. Similarly, the addition of quaternary centres to a drug candidate can enhance both its activity and its metabolic stability2. When present in chiral ligands3, catalysts4 and auxiliaries5, quaternary centres can guide reactions toward both improved and unique regio-, stereo- and/or enantioselectivity. However, owing to their distinct steric congestion and conformational restriction, the formation of quaternary centres can be achieved reliably by only a few chemical transformations6,7. For particularly challenging cases-for example, the vicinal all-carbon8, oxa- and aza-quaternary centres9 in molecules such as azadirachtin10,11, scopadulcic acid A12,13 and acutumine14-the development of target-specific approaches as well as multiple functional-group and redox manipulations is often necessary. It is therefore desirable to establish alternative ways in which quaternary centres can positively affect and guide synthetic planning. Here we show that if a synthesis is designed such that each quaternary centre is deliberately leveraged to simplify the construction of the next-either through rate acceleration or blocking effects-then highly efficient, scalable and modular syntheses can result. This approach is illustrated using the conidiogenone family of terpenes as a representative case; however, this framework provides a distinct planning logic that is applicable to other targets of similar synthetic complexity that contain multiple quaternary centres.


Assuntos
Técnicas de Química Sintética , Terpenos/química , Terpenos/síntese química , Produtos Biológicos/síntese química , Produtos Biológicos/química , Catálise , Diterpenos/síntese química , Diterpenos/química , Preparações Farmacêuticas/síntese química , Preparações Farmacêuticas/química
2.
J Org Chem ; 82(7): 3826-3843, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28294614

RESUMO

A method for the catalytic, enantioselective, intramolecular sulfenoamination of alkenes with aniline nucleophiles has been developed. The method employs a chiral, Lewis basic selenophosphoramide catalyst and a Brønsted acid co-catalyst to promote stereocontrolled C-N and C-S bond formation by activation of an achiral sulfenylating agent. Benzoannulated nitrogen-containing heterocycles such as indolines, tetrahydroquinolines, and tetrahydrobenzazepines were prepared with high to excellent enantioselectivities. The impact of tether length and electron density of both the nucleophile and olefin on the reactivity, site selectivity, and enantioselectivity were investigated and interpreted in terms of substrate-dependent stereodetermining thiiranium ion formation or capture.


Assuntos
Alcenos/química , Compostos de Anilina/química , Aminação , Catálise , Bases de Lewis/química , Estereoisomerismo
3.
J Am Chem Soc ; 136(9): 3655-63, 2014 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-24548006

RESUMO

In the course of developing an enantioselective, Lewis base/Brønsted acid co-catalyzed carbosulfenylation of alkenes, a seemingly impossible conundrum arose: How could a catalyst inhibit a stoichiometric reaction? Despite the observation of very good enantioselectivities, the rate of the uncatalyzed reaction (i.e., no Lewis base) was found to be comparable to or slightly faster than that of the catalyzed process. A combination of detailed kinetic and spectroscopic studies revealed that the answer is not the direct involvement of the Lewis base catalyst, but rather the secondary consequences of its conversion to the catalytically active sulfenylating agent. Generation of the chiral sulfenylating species is accompanied by the formation of equimolar amounts of sulfonate ion and phthalimide which serve to buffer the remaining Brønsted acid and thus inhibit the racemic background reaction. Thus, the actual background reaction operative under catalytic conditions is not well mimicked by simply removing the catalyst.


Assuntos
Alcenos/química , Catálise , Cinética , Bases de Lewis/química , Ftalimidas/química , Estereoisomerismo , Especificidade por Substrato
4.
J Am Chem Soc ; 136(25): 8915-8, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24926794

RESUMO

A method for the enantioselective, intramolecular sulfenoamination of various olefins has been developed using a chiral BINAM-based selenophosphoramide, Lewis base catalyst. Terminal and trans disubstituted alkenes afforded pyrrolidines, piperidines, and azepanes in high yields and high enantiomeric ratios via enantioselective formation and subsequent stereospecific capture of the thiiranium intermediate with the pendant tosyl-protected amine.


Assuntos
Alcenos/química , Azepinas/síntese química , Bases de Lewis/química , Piperidinas/síntese química , Pirrolidinas/síntese química , Aminação , Azepinas/química , Catálise , Estrutura Molecular , Piperidinas/química , Pirrolidinas/química , Estereoisomerismo
6.
Org Lett ; 25(7): 1083-1087, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36794874

RESUMO

Transition-metal-free, practical one-pot synthesis of C4-aryl-substituted tetrahydroquinolines from simple anilines and readily accessible propargylic chlorides has been developed. Activation of the C-Cl bond by 1,1,1,3,3,3-hexafluoroisopropanol turned out to be the key interaction, which allowed C-N bond formation under an acidic medium. Propargylated aniline is formed as an intermediate via propargylation, and subsequential cyclization and reduction gave 4-arylated tetrahydroquinolines. To demonstrate the synthetic utility, total syntheses of aflaquinolone F and I have been accomplished.

7.
Nat Commun ; 13(1): 904, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35173167

RESUMO

Targeted protein degradation allows targeting undruggable proteins for therapeutic applications as well as eliminating proteins of interest for research purposes. While several degraders that harness the proteasome or the lysosome have been developed, a technology that simultaneously degrades targets and accelerates cellular autophagic flux is still missing. In this study, we develop a general chemical tool and platform technology termed AUTOphagy-TArgeting Chimera (AUTOTAC), which employs bifunctional molecules composed of target-binding ligands linked to autophagy-targeting ligands. AUTOTACs bind the ZZ domain of the otherwise dormant autophagy receptor p62/Sequestosome-1/SQSTM1, which is activated into oligomeric bodies in complex with targets for their sequestration and degradation. We use AUTOTACs to degrade various oncoproteins and degradation-resistant aggregates in neurodegeneration at nanomolar DC50 values in vitro and in vivo. AUTOTAC provides a platform for selective proteolysis in basic research and drug development.


Assuntos
Autofagia/fisiologia , Lisossomos/metabolismo , Proteínas Oncogênicas/metabolismo , Agregados Proteicos/fisiologia , Proteólise , Linhagem Celular Tumoral , Células HeLa , Humanos , Ligação Proteica/fisiologia , Dobramento de Proteína , Proteostase/fisiologia , Transdução de Sinais
8.
Chem Sci ; 11(40): 10939-10944, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34094343

RESUMO

The recent natural product isolates spiroviolene and spirograterpene A are two relatively non-functionalized linear triquinane terpenes with a large number of structural homologies. Nevertheless, three significant areas of structural disparity exist based on their original assignments, one of which implies a key stereochemical divergence early in their respective biosyntheses. Herein, using two known bicyclic ketone intermediates, a core Pd-catalyzed Heck cyclization sequence, and several chemoselective transformations, we describe concise total syntheses of both natural product targets and propose that the structure of spiroviolene should be reassigned. As a result, these natural products possess greater homology than previously anticipated.

9.
Synthesis (Stuttg) ; 49(13): 2873-2888, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29937594

RESUMO

Three general routes for the synthesis of (E)-2-alkenyl-tethered anilines have been developed. The first route involves a 3-aza-Cope rearrangement of N-allylic anilines in the presence of a Lewis acid. The requisite N-allylic anilines were prepared by the addition of vinyl-magnesium reagents to the corresponding aldimines. The second route details a direct cross-metathesis of 2-allylic or 2-homoallylic anilines with styrenes. The third route involves a palladium-catalyzed C-N cross-coupling of aryl halides. Taken together, these three strategies allowed access to the requisite aniline substrates with pendant alkenes at the 2-position with excellent trans selectivities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA