Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Opt Express ; 30(13): 23115-23123, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-36224998

RESUMO

We propose a period control method of liquid crystal polarization grating (LCPG) based on an nterference-free and single exposure process. By adjusting three parameters of exposure setup, including incident angle of exposure beam, wedge angle of birefringent prism and tilt angle of the sample, polarization distribution of the exposure beam is changed. The spatially variant polarization of the exposure beam is transferred to liquid crystal (LC) molecules by an azo-dye photo-sensitive layer. Consequently, the LCPG with the target period is obtained. The proposed method has high flexibility and a wide range of period adjustment covering several microns to more than thousands of microns according to calculated results. Experimental results fit well with calculations. The LCPGs with different values of period from 4.5µm to more than 200µm have been realized experimentally. The proposed interference-free method would accelerate the application of LCPGs with a robust and simple fabrication process.

2.
Opt Express ; 29(17): 27472-27480, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34615162

RESUMO

We report the ferroelectric liquid crystal (FLC) Pancharatnam-Berry lenses (PBLs) with rapid transmittance tunability. The FLC PBLs were fabricated using a single-step holographic exposure system based on a spatial light modulator working as numerous polarization retarders, providing a simple way to fabricate FLC continuous aligning structures. A state-selection sector containing a binary FLC switch was utilized for fast changing input light's polarization handedness. Thus, when light passes through a FLC PBL, the output light's polarization handedness can be switched accordingly. In this case, FLC PBLs can function as concave/convex lenses with rapidly switching speed. Photo sensitive azo-dye material was used as the aligning layer for both FLC PBLs and FLC switches. The fabricated FLC PBLs and the FLC switches show fast switching-on times of 150µs and 50µs respectively. The FLC PBLs combining with the state-selection sector can have potential applications on varies displays and augmented reality.

3.
Opt Express ; 27(9): 13061-13071, 2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31052836

RESUMO

Holographic lithography is widely used as an effective approach for two-dimensional (2D) photonic crystal fabrication. However, for the fabrication of 2D polarization structures based on photoaligned liquid crystals (LCs), holographic lithography method is limited. The fabrication requires full coverage of light intensity, 2D chiral distribution and continuously varying polarization direction, which could be hardly guaranteed by multi-beam interference of circularly polarized light (CPL). Herein, we introduce a linearly polarized light (LPL) into a three-CPL interference configuration to improve the interference field and fulfill the critical requirement. The introduced LPL intensity is chosen to be 1/5 of the CPL to guarantee both full coverage of light intensity and well photoalignment defined LC directors. Moreover, the introduction of the weak LPL into multiple CPL interference is shown to give little disturbance to the desired diffraction properties.

4.
Opt Express ; 27(25): 36903-36910, 2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31873461

RESUMO

Orbital angular momentum (OAM) of light has been extensively studied during the past two decades. Till now, it is a formidable challenge to dynamically manipulate OAM in fast switching speed, good beam quality and low power consumption. Here, an alternative strategy is proposed through the combination of the uniformly-aligned ferroelectric liquid crystal (FLC) and the space-variant photo-patterned nematic liquid crystal. Owing to the excellent electro-optical properties of the adopted FLC, the high-performance electrical switching of OAM, especially, its helicity and the superposed state (i.e., the cylindrical vector beam), can be realized in good quality and high efficiency. The symmetric switching time is down to 120 µs even at a very low driving voltage of 1.7 V/µm. This supplies a practical and universal method towards high-frequency manipulation of OAM and other structured beams.

5.
Opt Express ; 27(20): 29332-29339, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31684669

RESUMO

An approach for generating cycloidal pattern of liquid crystal (LC) molecules based on interference-free and single exposure is illustrated. The spatial manipulation of polarization state is achieved using birefringent prism and wave plates. And then, the spatially variant polarization of exposure beam is transferred to LC molecules by azo-dye photo-sensitive layer. Consequently, the LC samples fabricated shows periodically cycloidal texture and diffraction efficiency more than 99%. The measured period Λ and diffraction angle are in good consistency with theoretical results. Thus, this exposure method provides an effective and robust way for fabricating large-area LC elements, therefore paving the way for widespread applications of high-performance diffractive LC devices.

6.
Appl Opt ; 58(4): 1146-1151, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30874165

RESUMO

We disclose a method of fabricating a low-voltage-driven smart glass based on micro-patterned liquid crystal (LC) Fresnel lenses and implement three proof-of-concept prototypes. Distinct from the conventional LC-based smart windows with the scattering state, the prominence of our proposed LC smart glass in blurry state under both normal and oblique observations stems from the image distortion caused by LC Fresnel lenses. In addition, the high transmittance (>90%) in clear state is obtained by applying a low voltage of 2 V to each prototype. Moreover, by elaborating the design of the LC smart glass, the reversed switching states [i.e., a clear (voltage OFF) state and a blurry (voltage ON) state] and fast switching time can be simultaneously achieved.

7.
Opt Express ; 26(6): 7683-7692, 2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-29609320

RESUMO

A two-dimensional (2D) pure polarization pattern via four-beam polarization interferometry of circularly polarized beams is demonstrated both theoretically and experimentally. The polarization orientation of the interference pattern is recorded by an azobenzene photoalignment layer and transferred to liquid crystal (LC), enabling the fabrication of a 2D liquid crystal (LC) chiral structure. This structure behaves as a 2D LC polarization grating (LCPG) that can generate multiple polarization-selective diffraction beams of orthogonal polarization states with high efficiency. This 2D LCPG provides an effective way to distribute an optical signal into multiple receivers by both incidence polarization control and external electric field, therefore offering potential applications on multi-channel optical communication and information processing.

8.
Langmuir ; 34(15): 4465-4472, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29584437

RESUMO

Azobenzene materials provide an effective way for liquid crystal (LC) alignment besides traditional rubbing technology. A strong relationship between relative humidity (RH) and the photoalignment quality of hydrophilic azobenzene dye brilliant yellow (BY) has been investigated. Good photoalignment quality can only be ensured at about 40% RH or below. On the other hand, the photostability of the alignment layer is also influenced dramatically by RH. The rewritability can be guaranteed at extremely low RH (≤10%). It is gradually lost with increasing RH, and the alignment layer becomes photostable against further light exposure when at 40% RH or above. Therefore, the BY photoalignment layer can be tuned from rewritable to photostable by simply adjusting RH, and thus multistep photopatterned alignments can be obtained and reserved based on this method. Similar properties are also expected for other hydrophilic azobenzene photoalignment materials, where the specific RH values may vary correspondingly. The reason is due to the strong intermolecular interaction and J-aggregate formation of BY molecules with water insertion. Moreover, the lyotropic LC formed by J-aggregated BY molecules in aqueous solution is reported here.

9.
Nano Lett ; 17(5): 3133-3138, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28394620

RESUMO

Photoalignment technology provides high alignment quality with an exceptional control over the local director of liquid crystals. Because of the reorientation ability of sulfonic azo dye molecules, they offer high azimuthal and polar anchoring energy with a low pretilt angle for the orientation of liquid crystals and liquid crystal composites. In this work, we make use of this approach to align thin film composites of light-emitting semiconductor nanorods dispersed in a liquid crystal polymer into both one-dimensional and two-dimensional microscale patterns. After unidirectional alignment, the patterns are fabricated by a second irradiation with different polarization azimuth and the employment of a photomask. Fluorescence micrographs reveal the nanorod pattern alignment in domain sizes down to 2 µm. Apart from demonstrating the possibility of controlling the orientation of anisotropic nanocrystals with strongly polarized emission on microscopic scale, our results are promising for the fabrication of complex nanostructures for photonic applications.

10.
Langmuir ; 33(16): 3968-3974, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28379710

RESUMO

Azobenzene photoalignment materials are highly effective for liquid crystal alignment with high sensitivity and rewritability. A strong relationship between relative humidity and the alignment quality of a thin layer of azobenzenesulfonic dye has been investigated, where the photoinduced phase retardation, order parameter, and anchoring strength of the alignment layer are influenced dramatically by relative humidity. Our results provide fabrication guidance for the photoalignment process in both display and photonic applications. In addition, an exotic substantial ordering enhancement is observed by increasing the relative humidity without further light illumination, where the self-assembly of the photoaligned material incorporated with water molecules is the underlying reason for the enhanced high ordering (S > 0.8). Based on X-ray diffraction and depolarized optical microscopy observation, together with the photoalignment quality, a semicrystalline structure of the humidified azobenzenesulfonic material is proposed. The transition from amorphous solid at low relative humidity to semicrystal at high relative humidity provides a new perspective of understanding the hydrophilic photoalignment materials.

11.
Opt Express ; 24(22): 25510-25514, 2016 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-27828489

RESUMO

A strategy for integrated and reconfigurable optical paths based on stacking optical functional films is proposed. It is demonstrated by stacking two liquid crystal polymer q-plates and one quarter-wave plate for vector vortex beams generation. The topological charge and polarization order of generated vector vortex beams can be controlled independently by stacking and reordering different optical films with repeated adhesive ability. It supplies a low-cost, light-weight and versatile technique for reducing the volume of free-space optical system and has a great potential in optical researches and applications.

12.
Opt Express ; 22(7): 8024-34, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24718177

RESUMO

In this paper, we present a liquid-crystal-polymer (LCP)-based dual-layer micro-quarter-wave-retarder (MQWR) array for active polarization image sensors. The proposed MQWRs, for the first time, enable the extraction of the incident light's circularly polarized components in the whole visible regime, which correspond to the fourth parameter of Stokes vector. Compared with the previous implementations, our proposed MQWRs feature high achromaticity, making their applications no longer limited to monochromatic illumination. In addition, the presented thin structure exhibits an overall thickness of 2.43µm, leading to greatly alleviated optical cross-talk between adjacent photo-sensing pixels. Moreover, the reported superior optical performance (e.g. minor transmittance, extinction ratio) validates our optical design and optimization of the proposed MQWRs. Furthermore, the demonstrated simple fabrication recipe offers a cost-effective solution for the monolithic integration between the proposed MQWR array and the commercial solid-state image sensors, which makes the multi-spectral full Stokes polarization imaging system on a single chip feasible.

13.
Opt Lett ; 39(10): 2900-3, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24978232

RESUMO

We disclose the vertically aligned deformed helix ferroelectric liquid crystal whose Kerr constant (Kkerr≈130 nm/V2 at λ=543 nm) is around one order of magnitude higher than any other value previously reported for liquid crystalline structures. Under certain conditions, the phase modulation with ellipticity less than 0.05 over the range of continuous and hysteresis-free electric adjustment of the phase shift from zero to 2π has been obtained at subkilohertz frequency.

14.
Opt Lett ; 39(16): 4679-82, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25121847

RESUMO

In this Letter we disclose a method to realize a good alignment of ferroelectric liquid crystals (FLCs) in microchannels, based on photo-alignment. The sulfonic azo dye used in our research offers variable anchoring energy depending on the irradiation energy and thus provides good control on the FLC alignment in microchannels. The good FLC alignment has been observed only when anchoring energy normalized to the capillary diameter is less than the elastic energy of the FLC helix. The same approach can also be used for the different microstructures viz. photonic crystal fibers, microwaveguides, etc. which gives an opportunity for designing a photonic devices based on FLC.

15.
Opt Lett ; 38(11): 1775-7, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23722740

RESUMO

In this Letter we disclose a method to fabricate a liquid crystal (LC) Fresnel zone lens (FZL) with higher efficiency. The LCFZL, based on alternate twisted nematic (TN) and planar aligned (PA) regions, has been prepared by means of a two-step photo-alignment process. The FZL profile for both optical regimes, i.e., in TN and PA alignment domains, generates the same focal length (f). Thus, the proposed LCFZL manifests double light intensity at the focal point and therefore offers double the efficiency of existing FZLs. Moreover, because of lower driving voltage and fast response, these elements could find application in many modern devices.

16.
Opt Lett ; 38(23): 5040-2, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24281504

RESUMO

Direct compression of femtosecond optical pulses from a Ti:sapphire laser oscillator was realized with a cholesteric liquid crystal acting as a nonlinear 1D periodic Bragg grating. With a 6 µm thick sample, the pulse duration could be compressed from 100 to 48 fs. Coupled-mode equations for forward and backward waves were employed to simulate the dynamics therein, and good agreement between theory and experiment was obtained.

17.
Opt Express ; 20(11): 11899-905, 2012 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-22714175

RESUMO

Despite the wide application of liquid crystals (LCs) in the visible frequency range, their properties in the terahertz range have not yet been extensively investigated. In this paper we have investigated the terahertz properties of LCs E7, BL037, RDP-94990 and RDP-97304 using terahertz time-domain-spectroscopy. We find that RDP-94990 has the largest birefringence and smallest absorption in the terahertz range compared to E7 and BL037. We highlight the importance of investigating all parameters, not just the birefringence, when designing fast, efficient and transmissive terahertz LC devices.


Assuntos
Cristais Líquidos/química , Luz , Teste de Materiais , Refratometria , Espalhamento de Radiação , Radiação Terahertz
18.
Opt Lett ; 37(12): 2343-5, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22739902

RESUMO

The electro-optical behavior of deformed helix ferroelectric liquid crystal in reflective mode is described in this paper. The electrically controlled reflectance has been measured at subkilohertz driving voltage frequency for different polarizations of the incident light and compared quite successfully with the simulation results.

19.
Opt Express ; 19(6): 5565-73, 2011 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-21445195

RESUMO

We report a micropolarizer array technology exploiting "guest-host" interactions in liquid crystals for visible imaging polarimetry. We demonstrate high resolution thin micropolarizer arrays with a 5 µm×5 µm pixel pitch and a thickness of 0.95 µm. With the "host" nematic liquid crystal molecules photo-aligned by sulfonic azo-dye SD1, we report averaged major principal transmittance, polarization efficiency and order parameter of 80.3%, 0.863 and 0.848, respectively across the 400 nm-700 nm visible spectrum range. The proposed fabrication technology completely removes the need for any selective etching during the fabrication/integration process of the micropolarizer array. Fully CMOS compatible, it is simple and cost-effective, requiring only spin-coating followed by a single ultraviolet-exposure through a "photoalignment master". This makes it well suited to low cost polarization imaging applications.

20.
Opt Express ; 18(17): 17776-87, 2010 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-20721165

RESUMO

In this paper, we describe the design, modeling, fabrication, and optical characterization of the first micropolarimeter array enabling full Stokes polarization imaging in visible spectrum. The proposed micropolarimeter is fabricated by patterning a liquid-crystal (LC) layer on top of a visible-regime metal-wire-grid polarizer (MWGP) using ultraviolet sensitive sulfonic-dye-1 as the LC photoalignment material. This arrangement enables the formation of either micrometer-scale LC polarization rotators, neutral density filters or quarter wavelength retarders. These elements are in turn exploited to acquire all components of the Stokes vector, which describes all possible polarization states of light. Reported major principal transmittance of 75% and extinction ratio of 1100 demonstrate that the MWGP's superior optical characteristics are retained. The proposed liquidcrystal micropolarimeter array can be integrated on top of a complementary metal-oxide-semiconductor (CMOS) image sensor for real-time full Stokes polarization imaging.


Assuntos
Luz , Cristais Líquidos , Microscopia de Polarização/instrumentação , Óptica e Fotônica/instrumentação , Semicondutores , Desenho de Equipamento , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA