RESUMO
Steady improvements in ambient air quality in the USA over the past several decades, in part a result of public policy1,2, have led to public health benefits1-4. However, recent trends in ambient concentrations of particulate matter with diameters less than 2.5 µm (PM2.5), a pollutant regulated under the Clean Air Act1, have stagnated or begun to reverse throughout much of the USA5. Here we use a combination of ground- and satellite-based air pollution data from 2000 to 2022 to quantify the contribution of wildfire smoke to these PM2.5 trends. We find that since at least 2016, wildfire smoke has influenced trends in average annual PM2.5 concentrations in nearly three-quarters of states in the contiguous USA, eroding about 25% of previous multi-decadal progress in reducing PM2.5 concentrations on average in those states, equivalent to 4 years of air quality progress, and more than 50% in many western states. Smoke influence on trends in the number of days with extreme PM2.5 concentrations is detectable by 2011, but the influence can be detected primarily in western and mid-western states. Wildfire-driven increases in ambient PM2.5 concentrations are unregulated under current air pollution law6 and, in the absence of further interventions, we show that the contribution of wildfire to regional and national air quality trends is likely to grow as the climate continues to warm.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Material Particulado , Incêndios Florestais , Humanos , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/química , Poluição do Ar/análise , Poluição do Ar/legislação & jurisprudência , Poluição do Ar/estatística & dados numéricos , Aquecimento Global/estatística & dados numéricos , Material Particulado/análise , Material Particulado/química , Fumaça/análise , Estados Unidos , Incêndios Florestais/estatística & dados numéricos , Política Ambiental/legislação & jurisprudência , Política Ambiental/tendênciasRESUMO
Air pollution negatively affects a range of health outcomes. Wildfire smoke is an increasingly important contributor to air pollution, yet wildfire smoke events are highly salient and could induce behavioral responses that alter health impacts. We combine geolocated data covering all emergency department (ED) visits to nonfederal hospitals in California from 2006 to 2017 with spatially resolved estimates of daily wildfire smoke PM[Formula: see text] concentrations and quantify how smoke events affect ED visits. Total ED visits respond nonlinearly to smoke concentrations. Relative to a day with no smoke, total visits increase by 1 to 1.5% in the week following low or moderate smoke days but decline by 6 to 9% following extreme smoke days. Reductions persist for at least a month. Declines at extreme levels are driven by diagnoses not thought to be acutely impacted by pollution, including accidental injuries and several nonurgent symptoms, and declines come disproportionately from less-insured populations. In contrast, health outcomes with the strongest physiological link to short-term air pollution increase dramatically in the week following an extreme smoke day: We estimate that ED visits for asthma, COPD, and cough all increase by 30 to 110%. Data from internet searches, vehicle traffic sensors, and park visits indicate behavioral changes on high smoke days consistent with declines in healthcare utilization. Because low and moderate smoke days vastly outweigh high smoke days, we estimate that smoke was responsible for an average of 3,010 (95% CI: 1,760-4,380) additional ED visits per year 2006 to 2017. Given the increasing intensity of wildfire smoke events, behavioral mediation is likely to play a growing role in determining total smoke impacts.
Assuntos
Poluição do Ar , Asma , Incêndios Florestais , Humanos , Poluição do Ar/efeitos adversos , Tosse , Serviço Hospitalar de EmergênciaRESUMO
Smoke from wildfires is a growing health risk across the US. Understanding the spatial and temporal patterns of such exposure and its population health impacts requires separating smoke-driven pollutants from non-smoke pollutants and a long time series to quantify patterns and measure health impacts. We develop a parsimonious and accurate machine learning model of daily wildfire-driven PM2.5 concentrations using a combination of ground, satellite, and reanalysis data sources that are easy to update. We apply our model across the contiguous US from 2006 to 2020, generating daily estimates of smoke PM2.5 over a 10 km-by-10 km grid and use these data to characterize levels and trends in smoke PM2.5. Smoke contributions to daily PM2.5 concentrations have increased by up to 5 µg/m3 in the Western US over the last decade, reversing decades of policy-driven improvements in overall air quality, with concentrations growing fastest for higher income populations and predominantly Hispanic populations. The number of people in locations with at least 1 day of smoke PM2.5 above 100 µg/m3 per year has increased 27-fold over the last decade, including nearly 25 million people in 2020 alone. Our data set can bolster efforts to comprehensively understand the drivers and societal impacts of trends and extremes in wildfire smoke.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Incêndios Florestais , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluentes Ambientais/análise , Humanos , Material Particulado/análise , Fumaça/análiseRESUMO
Experiments and models suggest that climate affects mosquito-borne disease transmission. However, disease transmission involves complex nonlinear interactions between climate and population dynamics, which makes detecting climate drivers at the population level challenging. By analysing incidence data, estimated susceptible population size, and climate data with methods based on nonlinear time series analysis (collectively referred to as empirical dynamic modelling), we identified drivers and their interactive effects on dengue dynamics in San Juan, Puerto Rico. Climatic forcing arose only when susceptible availability was high: temperature and rainfall had net positive and negative effects respectively. By capturing mechanistic, nonlinear and context-dependent effects of population susceptibility, temperature and rainfall on dengue transmission empirically, our model improves forecast skill over recent, state-of-the-art models for dengue incidence. Together, these results provide empirical evidence that the interdependence of host population susceptibility and climate drives dengue dynamics in a nonlinear and complex, yet predictable way.
Assuntos
Dengue , Animais , Dengue/epidemiologia , Suscetibilidade a Doenças , Dinâmica Populacional , Porto Rico/epidemiologia , TemperaturaRESUMO
Vector-borne diseases (VBDs) are embedded within complex socio-ecological systems. While research has traditionally focused on the direct effects of VBDs on human morbidity and mortality, it is increasingly clear that their impacts are much more pervasive. VBDs are dynamically linked to feedbacks between environmental conditions, vector ecology, disease burden, and societal responses that drive transmission. As a result, VBDs have had profound influence on human history. Mechanisms include: (1) killing or debilitating large numbers of people, with demographic and population-level impacts; (2) differentially affecting populations based on prior history of disease exposure, immunity, and resistance; (3) being weaponised to promote or justify hierarchies of power, colonialism, racism, classism and sexism; (4) catalysing changes in ideas, institutions, infrastructure, technologies and social practices in efforts to control disease outbreaks; and (5) changing human relationships with the land and environment. We use historical and archaeological evidence interpreted through an ecological lens to illustrate how VBDs have shaped society and culture, focusing on case studies from four pertinent VBDs: plague, malaria, yellow fever and trypanosomiasis. By comparing across diseases, time periods and geographies, we highlight the enormous scope and variety of mechanisms by which VBDs have influenced human history.
Assuntos
Malária , Doenças Transmitidas por Vetores , Vetores de Doenças , HumanosRESUMO
Mathematical models of epidemics are important tools for predicting epidemic dynamics and evaluating interventions. Yet, because early models are built on limited information, it is unclear how long they will accurately capture epidemic dynamics. Using a stochastic SEIR model of COVID-19 fitted to reported deaths, we estimated transmission parameters at different time points during the first wave of the epidemic (March-June, 2020) in Santa Clara County, California. Although our estimated basic reproduction number ([Formula: see text]) remained stable from early April to late June (with an overall median of 3.76), our estimated effective reproduction number ([Formula: see text]) varied from 0.18 to 1.02 in April before stabilizing at 0.64 on 27 May. Between 22 April and 27 May, our model accurately predicted dynamics through June; however, the model did not predict rising summer cases after shelter-in-place orders were relaxed in June, which, in early July, was reflected in cases but not yet in deaths. While models are critical for informing intervention policy early in an epidemic, their performance will be limited as epidemic dynamics evolve. This paper is one of the first to evaluate the accuracy of an early epidemiological compartment model over time to understand the value and limitations of models during unfolding epidemics.
Assuntos
COVID-19 , Epidemias , Número Básico de Reprodução , Humanos , Modelos Teóricos , SARS-CoV-2RESUMO
Climate change poses significant threats to public health, with dengue representing a growing concern due to its high existing burden and sensitivity to climatic conditions. Yet, the quantitative impacts of temperature warming on dengue, both in the past and in the future, remain poorly understood. In this study, we quantify how dengue responds to climatic fluctuations, and use this inferred temperature response to estimate the impacts of historical warming and forecast trends under future climate change scenarios. To estimate the causal impact of temperature on the spread of dengue in the Americas and Asia, we assembled a dataset encompassing nearly 1.5 million dengue incidence records from 21 countries. Our analysis revealed a nonlinear relationship between temperature and dengue incidence with the largest marginal effects at lower temperatures (around 15°C), peak incidence at 27.8°C (95% CI: 27.3 - 28.2°C), and subsequent declines at higher temperatures. Our findings indicate that historical climate change has already increased dengue incidence 18% (12 - 25%) in the study region, and projections suggest a potential increase of 40% (17 - 76) to 57% (33 - 107%) by mid-century depending on the climate scenario, with some areas seeing up to 200% increases. Notably, our models suggest that lower emissions scenarios would substantially reduce the warming-driven increase in dengue burden. Together, these insights contribute to the broader understanding of how long-term climate patterns influence dengue, providing a valuable foundation for public health planning and the development of strategies to mitigate future risks due to climate change.
RESUMO
Mosquito vectors of pathogens (e.g., Aedes, Anopheles, and Culex spp. which transmit dengue, Zika, chikungunya, West Nile, malaria, and others) are of increasing concern for global public health. These vectors are geographically shifting under climate and other anthropogenic changes. As small-bodied ectotherms, mosquitoes are strongly affected by temperature, which causes unimodal responses in mosquito life history traits (e.g., biting rate, adult mortality rate, mosquito development rate, and probability of egg-to-adult survival) that exhibit upper and lower thermal limits and intermediate thermal optima in laboratory studies. However, it remains unknown how mosquito thermal responses measured in laboratory experiments relate to the realized thermal responses of mosquitoes in the field. To address this gap, we leverage thousands of global mosquito occurrences and geospatial satellite data at high spatial resolution to construct machine-learning based species distribution models, from which vector thermal responses are estimated. We apply methods to restrict models to the relevant mosquito activity season and to conduct ecologically plausible spatial background sampling centered around ecoregions for comparison to mosquito occurrence records. We found that thermal minima estimated from laboratory studies were highly correlated with those from the species distributions (r = 0.87). The thermal optima were less strongly correlated (r = 0.69). For most species, we did not detect thermal maxima from their observed distributions so were unable to compare to laboratory-based estimates. The results suggest that laboratory studies have the potential to be highly transportable to predicting lower thermal limits and thermal optima of mosquitoes in the field. At the same time, lab-based models likely capture physiological limits on mosquito persistence at high temperatures that are not apparent from field-based observational studies but may critically determine mosquito responses to climate warming. Our results indicate that lab-based and field-based studies are highly complementary; performing the analyses in concert can help to more comprehensively understand vector response to climate change.
Assuntos
Aprendizado de Máquina , Mosquitos Vetores , Temperatura , Animais , Mosquitos Vetores/fisiologia , Mosquitos Vetores/crescimento & desenvolvimento , Mosquitos Vetores/virologia , Culex/fisiologia , Culex/crescimento & desenvolvimento , Culex/virologia , Aedes/fisiologia , Aedes/crescimento & desenvolvimento , Aedes/virologia , Anopheles/fisiologia , Anopheles/crescimento & desenvolvimento , Culicidae/fisiologiaRESUMO
Mosquito vectors of pathogens (e.g., Aedes , Anopheles , and Culex spp. which transmit dengue, Zika, chikungunya, West Nile, malaria, and others) are of increasing concern for global public health. These vectors are geographically shifting under climate and other anthropogenic changes. As small-bodied ectotherms, mosquitoes are strongly affected by temperature, which causes unimodal responses in mosquito life history traits (e.g., biting rate, adult mortality rate, mosquito development rate, and probability of egg-to-adult survival) that exhibit upper and lower thermal limits and intermediate thermal optima in laboratory studies. However, it remains unknown how mosquito thermal responses measured in laboratory experiments relate to the realized thermal responses of mosquitoes in the field. To address this gap, we leverage thousands of global mosquito occurrences and geospatial satellite data at high spatial resolution to construct machine-learning based species distribution models, from which vector thermal responses are estimated. We apply methods to restrict models to the relevant mosquito activity season and to conduct ecologically-plausible spatial background sampling centered around ecoregions for comparison to mosquito occurrence records. We found that thermal minima estimated from laboratory studies were highly correlated with those from the species distributions (r = 0.90). The thermal optima were less strongly correlated (r = 0.69). For most species, we did not detect thermal maxima from their observed distributions so were unable to compare to laboratory-based estimates. The results suggest that laboratory studies have the potential to be highly transportable to predicting lower thermal limits and thermal optima of mosquitoes in the field. At the same time, lab-based models likely capture physiological limits on mosquito persistence at high temperatures that are not apparent from field-based observational studies but may critically determine mosquito responses to climate warming.
RESUMO
Malaria is a life-threatening disease caused by Plasmodium parasites transmitted by Anopheles mosquitoes. In 2021, more than 247 million cases of malaria were reported worldwide, with an estimated 619,000 deaths. While malaria incidence has decreased globally in recent decades, some public health gains have plateaued, and many endemic hotspots still face high transmission rates. Understanding local drivers of malaria transmission is crucial but challenging due to the complex interactions between climate, entomological and human variables, and land use. This study focuses on highly climatically suitable and endemic areas in Côte d'Ivoire to assess the explanatory power of coarse climatic predictors of malaria transmission at a fine scale. Using data from 40 villages participating in a randomized controlled trial of a household malaria intervention, the study examines the effects of climate variation over time on malaria transmission. Through panel regressions and statistical modeling, the study investigates which variable (temperature, precipitation, or entomological inoculation rate) and its form (linear or unimodal) best explains seasonal malaria transmission and the factors predicting spatial variation in transmission. The results highlight the importance of temperature and rainfall, with quadratic temperature and all precipitation models performing well, but the causal influence of each driver remains unclear due to their strong correlation. Further, an independent, mechanistic temperature-dependent R 0 model based on laboratory data aligns well with observed malaria incidence rates, emphasizing the significance and predictability of temperature suitability across scales. By contrast, entomological variables, such as entomological inoculation rate, were not strong predictors of human incidence in this context. Finally, the study explores the predictors of spatial variation in malaria, considering land use, intervention, and entomological variables. The findings contribute to a better understanding of malaria transmission dynamics at local scales, aiding in the development of effective control strategies in endemic regions.
RESUMO
BACKGROUND: West Nile virus (WNV) is the leading cause of mosquito-borne illness in the continental USA. WNV occurrence has high spatiotemporal variation, and current approaches to targeted control of the virus are limited, making forecasting a public health priority. However, little research has been done to compare strengths and weaknesses of WNV disease forecasting approaches on the national scale. We used forecasts submitted to the 2020 WNV Forecasting Challenge, an open challenge organized by the Centers for Disease Control and Prevention, to assess the status of WNV neuroinvasive disease (WNND) prediction and identify avenues for improvement. METHODS: We performed a multi-model comparative assessment of probabilistic forecasts submitted by 15 teams for annual WNND cases in US counties for 2020 and assessed forecast accuracy, calibration, and discriminatory power. In the evaluation, we included forecasts produced by comparison models of varying complexity as benchmarks of forecast performance. We also used regression analysis to identify modeling approaches and contextual factors that were associated with forecast skill. RESULTS: Simple models based on historical WNND cases generally scored better than more complex models and combined higher discriminatory power with better calibration of uncertainty. Forecast skill improved across updated forecast submissions submitted during the 2020 season. Among models using additional data, inclusion of climate or human demographic data was associated with higher skill, while inclusion of mosquito or land use data was associated with lower skill. We also identified population size, extreme minimum winter temperature, and interannual variation in WNND cases as county-level characteristics associated with variation in forecast skill. CONCLUSIONS: Historical WNND cases were strong predictors of future cases with minimal increase in skill achieved by models that included other factors. Although opportunities might exist to specifically improve predictions for areas with large populations and low or high winter temperatures, areas with high case-count variability are intrinsically more difficult to predict. Also, the prediction of outbreaks, which are outliers relative to typical case numbers, remains difficult. Further improvements to prediction could be obtained with improved calibration of forecast uncertainty and access to real-time data streams (e.g. current weather and preliminary human cases).
Assuntos
Culicidae , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Humanos , Febre do Nilo Ocidental/epidemiologia , Saúde Pública , Clima , Surtos de Doenças , PrevisõesRESUMO
Our world is undergoing rapid planetary changes driven by human activities, often mediated by economic incentives and resource management, affecting all life on Earth. Concurrently, many infectious diseases have recently emerged or spread into new populations. Mounting evidence suggests that global change-including climate change, land-use change, urbanization, and global movement of individuals, species, and goods-may be accelerating disease emergence by reshaping ecological systems in concert with socioeconomic factors. Here, we review insights, approaches, and mechanisms by which global change drives disease emergence from a disease ecology perspective. We aim to spur more interdisciplinary collaboration with economists and identification of more effective and sustainable interventions to prevent disease emergence. While almost all infectious diseases change in response to global change, the mechanisms and directions of these effects are system specific, requiring new, integrated approaches to disease control that recognize linkages between environmental and economic sustainability and human and planetary health.
RESUMO
Pollution from wildfires constitutes a growing source of poor air quality globally. To protect health, governments largely rely on citizens to limit their own wildfire smoke exposures, but the effectiveness of this strategy is hard to observe. Using data from private pollution sensors, cell phones, social media posts and internet search activity, we find that during large wildfire smoke events, individuals in wealthy locations increasingly search for information about air quality and health protection, stay at home more and are unhappier. Residents of lower-income neighbourhoods exhibit similar patterns in searches for air quality information but not for health protection, spend less time at home and have more muted sentiment responses. During smoke events, indoor particulate matter (PM2.5) concentrations often remain 3-4× above health-based guidelines and vary by 20× between neighbouring households. Our results suggest that policy reliance on self-protection to mitigate smoke health risks will have modest and unequal benefits.
Assuntos
Poluição do Ar , Incêndios Florestais , Humanos , Fumaça/efeitos adversos , Fumaça/análise , Material Particulado/análiseRESUMO
Disease transmission is notoriously heterogeneous, and SARS-CoV-2 is no exception. A skewed distribution where few individuals or events are responsible for the majority of transmission can result in explosive, superspreading events, which produce rapid and volatile epidemic dynamics, especially early or late in epidemics. Anticipating and preventing superspreading events can produce large reductions in overall transmission rates. Here, we present a stochastic compartmental (SEIR) epidemiological model framework for estimating transmission parameters from multiple imperfectly observed data streams, including reported cases, deaths, and mobile phone-based mobility that incorporates individual-level heterogeneity in transmission using previous estimates for SARS-CoV-1 and SARS-CoV-2. We parameterize the model for COVID-19 epidemic dynamics by estimating a time-varying transmission rate that incorporates the impact of non-pharmaceutical intervention strategies that change over time, in five epidemiologically distinct settings-Los Angeles and Santa Clara Counties, California; Seattle (King County), Washington; Atlanta (Dekalb and Fulton Counties), Georgia; and Miami (Miami-Dade County), Florida. We find that the effective reproduction number (RE) dropped below 1 rapidly in all five locations following social distancing orders in mid-March, 2020, but that gradually increasing mobility starting around mid-April led to an RE once again above 1 in late May (Los Angeles, Miami, and Atlanta) or early June (Santa Clara County and Seattle). However, we find that increased social distancing starting in mid-July in response to epidemic resurgence once again dropped RE below 1 in all locations by August 14. We next used the fitted model to ask: how does truncating the individual-level transmission rate distribution (which removes periods of time with especially high individual transmission rates and thus models superspreading events) affect epidemic dynamics and control? We find that interventions that truncate the transmission rate distribution while partially relaxing social distancing are broadly effective, with impacts on epidemic growth on par with the strongest population-wide social distancing observed in April, 2020. Given that social distancing interventions will be needed to maintain epidemic control until a vaccine becomes widely available, "chopping off the tail" to reduce the probability of superspreading events presents a promising option to alleviate the need for extreme general social distancing.
Assuntos
COVID-19/prevenção & controle , COVID-19/transmissão , Epidemias/prevenção & controle , Modelos Teóricos , Distanciamento Físico , Número Básico de Reprodução , California , Florida , Georgia , Humanos , WashingtonRESUMO
The potential for adaptive evolution to enable species persistence under a changing climate is one of the most important questions for understanding impacts of future climate change. Climate adaptation may be particularly likely for short-lived ectotherms, including many pest, pathogen, and vector species. For these taxa, estimating climate adaptive potential is critical for accurate predictive modeling and public health preparedness. Here, we demonstrate how a simple theoretical framework used in conservation biology-evolutionary rescue models-can be used to investigate the potential for climate adaptation in these taxa, using mosquito thermal adaptation as a focal case. Synthesizing current evidence, we find that short mosquito generation times, high population growth rates, and strong temperature-imposed selection favor thermal adaptation. However, knowledge gaps about the extent of phenotypic and genotypic variation in thermal tolerance within mosquito populations, the environmental sensitivity of selection, and the role of phenotypic plasticity constrain our ability to make more precise estimates. We describe how common garden and selection experiments can be used to fill these data gaps. Lastly, we investigate the consequences of mosquito climate adaptation on disease transmission using Aedes aegypti-transmitted dengue virus in Northern Brazil as a case study. The approach outlined here can be applied to any disease vector or pest species and type of environmental change.
Assuntos
Adaptação Fisiológica , Aedes/fisiologia , Mudança Climática , Mosquitos Vetores/fisiologia , Temperatura , Adaptação Fisiológica/genética , Adaptação Fisiológica/fisiologia , Aedes/crescimento & desenvolvimento , Aedes/virologia , Animais , Dengue/transmissão , Mosquitos Vetores/crescimento & desenvolvimento , Mosquitos Vetores/virologiaRESUMO
Disease transmission is notoriously heterogeneous, and SARS-CoV-2 is no exception. A skewed distribution where few individuals or events are responsible for the majority of transmission can result in explosive, superspreading events, which produce rapid and volatile epidemic dynamics, especially early or late in epidemics. Anticipating and preventing superspreading events can produce large reductions in overall transmission rates. Here, we present a compartmental (SEIR) epidemiological model framework for estimating transmission parameters from multiple imperfectly observed data streams, including reported cases, deaths, and mobile phone-based mobility that incorporates individual-level heterogeneity in transmission using previous estimates for SARS-CoV-1 and SARS-CoV-2. We parameterize the model for COVID-19 epidemic dynamics by estimating a time-varying transmission rate that incorporates the impact of non-pharmaceutical intervention strategies that change over time, in five epidemiologically distinct settings---Los Angeles and Santa Clara Counties, California; Seattle (King County), Washington; Atlanta (Dekalb and Fulton Counties), Georgia; and Miami (Miami-Dade County), Florida. We find the effective reproduction number R E dropped below 1 rapidly following social distancing orders in mid-March, 2020 and remained there into June in Santa Clara County and Seattle, but climbed above 1 in late May in Los Angeles, Miami, and Atlanta, and has trended upward in all locations since April. With the fitted model, we ask: how does truncating the tail of the individual-level transmission rate distribution affect epidemic dynamics and control? We find interventions that truncate the transmission rate distribution while partially relaxing social distancing are broadly effective, with impacts on epidemic growth on par with the strongest population-wide social distancing observed in April, 2020. Given that social distancing interventions will be needed to maintain epidemic control until a vaccine becomes widely available, "chopping off the tail" to reduce the probability of superspreading events presents a promising option to alleviate the need for extreme general social distancing.
RESUMO
Non-pharmaceutical interventions to combat COVID-19 transmission have worked to slow the spread of the epidemic but can have high socio-economic costs. It is critical we understand the efficacy of non-pharmaceutical interventions to choose a safe exit strategy. Many current models are not suitable for assessing exit strategies because they do not account for epidemic resurgence when social distancing ends prematurely (e.g., statistical curve fits) nor permit scenario exploration in specific locations. We developed an SEIR-type mechanistic epidemiological model of COVID-19 dynamics to explore temporally variable non-pharmaceutical interventions. We provide an interactive tool and code to estimate the transmission parameter, ß, and the effective reproduction number, R eff . We fit the model to Santa Clara County, California, where an early epidemic start date and early shelter-in-place orders could provide a model for other regions. As of April 22, 2020, we estimate an R eff of 0.982 (95% CI: 0.849 - 1.107) in Santa Clara County. After June 1 (the end-date for Santa Clara County shelter-in-place as of April 27), we estimate a shift to partial social distancing, combined with rigorous testing and isolation of symptomatic individuals, is a viable alternative to indefinitely maintaining shelter-in-place. We also estimate that if Santa Clara County had waited one week longer before issuing shelter-in-place orders, 95 additional people would have died by April 22 (95% CI: 7 - 283). Given early life-saving shelter-in-place orders in Santa Clara County, longer-term moderate social distancing and testing and isolation of symptomatic individuals have the potential to contain the size and toll of the COVID-19 pandemic in Santa Clara County, and may be effective in other locations.
RESUMO
Many (re)emerging infectious diseases in humans arise from pathogen spillover from wildlife or livestock, and accurately predicting pathogen spillover is an important public health goal. In the Americas, yellow fever in humans primarily occurs following spillover from non-human primates via mosquitoes. Predicting yellow fever spillover can improve public health responses through vector control and mass vaccination. Here, we develop and test a mechanistic model of pathogen spillover to predict human risk for yellow fever in Brazil. This environmental risk model, based on the ecology of mosquito vectors and non-human primate hosts, distinguished municipality-months with yellow fever spillover from 2001 to 2016 with high accuracy (AUC = 0.72). Incorporating hypothesized cyclical dynamics of infected primates improved accuracy (AUC = 0.79). Using boosted regression trees to identify gaps in the mechanistic model, we found that important predictors include current and one-month lagged environmental risk, vaccine coverage, population density, temperature and precipitation. More broadly, we show that for a widespread human viral pathogen, the ecological interactions between environment, vectors, reservoir hosts and humans can predict spillover with surprising accuracy, suggesting the potential to improve preventive action to reduce yellow fever spillover and avert onward epidemics in humans. This article is part of the theme issue 'Dynamic and integrative approaches to understanding pathogen spillover'.
Assuntos
Aedes/virologia , Surtos de Doenças , Características de História de Vida , Mosquitos Vetores/virologia , Primatas/fisiologia , Febre Amarela/epidemiologia , Animais , Brasil/epidemiologia , Doenças Transmissíveis Emergentes/epidemiologia , Surtos de Doenças/veterinária , Meio Ambiente , Modelos Teóricos , Vacinação , Febre Amarela/veterinária , Febre Amarela/virologia , Vírus da Febre Amarela/fisiologiaRESUMO
Predicting pathogen spillover requires counting spillover events and aligning such counts with process-related covariates for each spillover event. How can we connect our analysis of spillover counts to simple, mechanistic models of pathogens jumping from reservoir hosts to recipient hosts? We illustrate how the pathways to pathogen spillover can be represented as a directed graph connecting reservoir hosts and recipient hosts and the number of spillover events modelled as a percolation of infectious units along that graph. Percolation models of pathogen spillover formalize popular intuition and management concepts for pathogen spillover, such as the inextricably multilevel nature of cross-species transmission, the impact of covariance between processes such as pathogen shedding and human susceptibility on spillover risk, and the assumptions under which the effect of a management intervention targeting one process, such as persistence of vectors, will translate to an equal effect on the overall spillover risk. Percolation models also link statistical analysis of spillover event datasets with a mechanistic model of spillover. Linear models, one might construct for process-specific parameters, such as the log-rate of shedding from one of several alternative reservoirs, yield a nonlinear model of the log-rate of spillover. The resulting nonlinearity is approximately piecewise linear with major impacts on statistical inferences of the importance of process-specific covariates such as vector density. We recommend that statistical analysis of spillover datasets use piecewise linear models, such as generalized additive models, regression clustering or ensembles of linear models, to capture the piecewise linearity expected from percolation models. We discuss the implications of our findings for predictions of spillover risk beyond the range of observed covariates, a major challenge of forecasting spillover risk in the Anthropocene. This article is part of the theme issue 'Dynamic and integrative approaches to understanding pathogen spillover'.
Assuntos
Doenças Transmissíveis Emergentes , Reservatórios de Doenças , Zoonoses , Animais , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/etiologia , Doenças Transmissíveis Emergentes/transmissão , Reservatórios de Doenças/veterinária , Humanos , Modelos Teóricos , Zoonoses/epidemiologia , Zoonoses/etiologia , Zoonoses/transmissãoRESUMO
Dengue, chikungunya, and Zika virus epidemics transmitted by Aedes aegypti mosquitoes have recently (re)emerged and spread throughout the Americas, Southeast Asia, the Pacific Islands, and elsewhere. Understanding how environmental conditions affect epidemic dynamics is critical for predicting and responding to the geographic and seasonal spread of disease. Specifically, we lack a mechanistic understanding of how seasonal variation in temperature affects epidemic magnitude and duration. Here, we develop a dynamic disease transmission model for dengue virus and Aedes aegypti mosquitoes that integrates mechanistic, empirically parameterized, and independently validated mosquito and virus trait thermal responses under seasonally varying temperatures. We examine the influence of seasonal temperature mean, variation, and temperature at the start of the epidemic on disease dynamics. We find that at both constant and seasonally varying temperatures, warmer temperatures at the start of epidemics promote more rapid epidemics due to faster burnout of the susceptible population. By contrast, intermediate temperatures (24-25°C) at epidemic onset produced the largest epidemics in both constant and seasonally varying temperature regimes. When seasonal temperature variation was low, 25-35°C annual average temperatures produced the largest epidemics, but this range shifted to cooler temperatures as seasonal temperature variation increased (analogous to previous results for diurnal temperature variation). Tropical and sub-tropical cities such as Rio de Janeiro, Fortaleza, and Salvador, Brazil; Cali, Cartagena, and Barranquilla, Colombia; Delhi, India; Guangzhou, China; and Manila, Philippines have mean annual temperatures and seasonal temperature ranges that produced the largest epidemics. However, more temperate cities like Shanghai, China had high epidemic suitability because large seasonal variation offset moderate annual average temperatures. By accounting for seasonal variation in temperature, the model provides a baseline for mechanistically understanding environmental suitability for virus transmission by Aedes aegypti. Overlaying the impact of human activities and socioeconomic factors onto this mechanistic temperature-dependent framework is critical for understanding likelihood and magnitude of outbreaks.