Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Photosynth Res ; 130(1-3): 19-31, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26749480

RESUMO

In higher plants, photosystem II (PSII) is a multi-subunit pigment-protein complex embedded in the thylakoid membranes of chloroplasts, where it is present mostly in dimeric form within the grana. Its light-harvesting antenna system, LHCII, is composed of trimeric and monomeric complexes, which can associate in variable number with the dimeric PSII core complex in order to form different types of PSII-LHCII supercomplexes. Moreover, PSII-LHCII supercomplexes can laterally associate within the thylakoid membrane plane, thus forming higher molecular mass complexes, termed PSII-LHCII megacomplexes (Boekema et al. 1999a, in Biochemistry 38:2233-2239; Boekema et al. 1999b, in Eur J Biochem 266:444-452). In this study, pure PSII-LHCII megacomplexes were directly isolated from stacked pea thylakoid membranes by a rapid single-step solubilization, using the detergent n-dodecyl-α-D-maltoside, followed by sucrose gradient ultracentrifugation. The megacomplexes were subjected to biochemical and structural analyses. Transmission electron microscopy on negatively stained samples, followed by single-particle analyses, revealed a novel form of PSII-LHCII megacomplexes, as compared to previous studies (Boekema et al.1999a, in Biochemistry 38:2233-2239; Boekema et al. 1999b, in Eur J Biochem 266:444-452), consisting of two PSII-LHCII supercomplexes sitting side-by-side in the membrane plane, sandwiched together with a second copy. This second copy of the megacomplex is most likely derived from the opposite membrane of a granal stack. Two predominant forms of intact sandwiched megacomplexes were observed and termed, according to (Dekker and Boekema 2005 Biochim Biophys Acta 1706:12-39), as (C2S2)4 and (C2S2 + C2S2M2)2 megacomplexes. By applying a gel-based proteomic approach, the protein composition of the isolated megacomplexes was fully characterized. In summary, the new structural forms of isolated megacomplexes and the related modeling performed provide novel insights into how PSII-LHCII supercomplexes may bind to each other, not only in the membrane plane, but also between granal stacks within the chloroplast.


Assuntos
Complexos de Proteínas Captadores de Luz/isolamento & purificação , Complexo de Proteína do Fotossistema II/isolamento & purificação , Pisum sativum/fisiologia , Eletroforese em Gel de Poliacrilamida , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/fisiologia , Espectrometria de Massas/métodos , Microscopia Eletrônica , Microscopia Eletrônica de Transmissão , Pisum sativum/química , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/fisiologia , Proteômica/métodos
2.
Phys Chem Chem Phys ; 17(12): 7775-86, 2015 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-25715190

RESUMO

Titanium dioxide (TiO2) and zinc oxide (ZnO) nanostructures have been widely used as photo-catalysts due to their low-cost, high surface area, robustness, abundance and non-toxicity. In this work, four TiO2 and ZnO-based nanostructures, i.e. TiO2 nanoparticles (TiO2 NPs), TiO2 nanotubes (TiO2 NTs), ZnO nanowires (ZnO NWs) and ZnO@TiO2 core-shell structures, specifically prepared with a fixed thickness of about 1.5 µm, are compared for the solar-driven water splitting reaction, under AM1.5G simulated sunlight. Complete characterization of these photo-electrodes in their structural and photo-electrochemical properties was carried out. Both TiO2 NPs and NTs showed photo-current saturation reaching 0.02 and 0.12 mA cm(-2), respectively, for potential values of about 0.3 and 0.6 V vs. RHE. In contrast, the ZnO NWs and the ZnO@TiO2 core-shell samples evidence a linear increase of the photocurrent with the applied potential, reaching 0.45 and 0.63 mA cm(-2) at 1.7 V vs. RHE, respectively. However, under concentrated light conditions, the TiO2 NTs demonstrate a higher increase of the performance with respect to the ZnO@TiO2 core-shells. Such material-dependent behaviours are discussed in relation with the different charge transport mechanisms and interfacial reaction kinetics, which were investigated through electrochemical impedance spectroscopy. The role of key parameters such as electronic properties, specific surface area and photo-catalytic activity in the performance of these materials is discussed. Moreover, proper optimization strategies are analysed in view of increasing the efficiency of the best performing TiO2 and ZnO-based nanostructures, toward their practical application in a solar water splitting device.

3.
Nanomaterials (Basel) ; 14(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38607095

RESUMO

The synthesis of novel catalysts for the oxygen reduction reaction, by means of a fast one-pot microwave-assisted procedure, is reported herein and deeply explained. In particular, the important role of doping atoms, like sulfur and nitrogen, in Fe2O3-reduced graphene oxide nanocomposites is described to address the modification of catalytic performance. The presence of dopants is confirmed by X-ray Photoelectron Spectroscopy analysis, while the integration of iron oxide nanoparticles, by means of decoration of the graphene structure, is corroborated by electron microscopy, which also confirms that there is no damage to the graphene sheets induced by the synthesis procedure. The electrochemical characterizations put in evidence the synergistic catalysis effects of dopant atoms with Fe2O3 and, in particular, the importance of sulfur introduction into the graphene lattice. Catalytic performance of as-prepared materials toward oxygen reduction shows values close to the Pt/C reference material, commonly used for fuel cell and metal-air battery applications.

4.
Nat Commun ; 15(1): 2522, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514605

RESUMO

Liquid-phase transmission electron microscopy is a burgeoning experimental technique for monitoring nanoscale dynamics in a liquid environment, increasingly employing microfluidic reactors to control the composition of the sample solution. Current challenges comprise fast mass transport dynamics inside the central nanochannel of the liquid cell, typically flow cells, and reliable fixation of the specimen in the limited imaging area. In this work, we present a liquid cell concept - the diffusion cell - that satisfies these seemingly contradictory requirements by providing additional on-chip bypasses to allow high convective transport around the nanochannel in which diffusive transport predominates. Diffusion cell prototypes are developed using numerical mass transport models and fabricated on the basis of existing two-chip setups. Important hydrodynamic parameters, i.e., the total flow resistance, the flow velocity in the imaging area, and the time constants of mixing, are improved by 2-3 orders of magnitude compared to existing setups. The solution replacement dynamics achieved within seconds already match the mixing timescales of many ex-situ scenarios, and further improvements are possible. Diffusion cells can be easily integrated into existing liquid-phase transmission electron microscopy workflows, provide correlation of results with ex-situ experiments, and can create additional research directions addressing fast nanoscale processes.

5.
Langmuir ; 29(50): 15711-8, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24266688

RESUMO

In this work, photocurable perfluoropolyethers (PFPEs) have been used for the fabrication of microfluidic devices by a direct photolithographic process. During this mask-assisted photopolymerization technique, the material is directly photopolymerized in the presence of a mask, avoiding the use of a master. We demonstrate the high level of control in transferring micropattern features with high density, a minimum transferred size of 15 µm, a high aspect ratio (at least up to 6.5), and complex shapes useful for microfluidic applications. Moreover, we successfully apply this technology to fabricate sealed devices; the fabrication time scale for the overall process is around 5 min. The devices are able to withstand a flow pressure of up to 3.8 bar, as required for most microfluidics. Finally, the devices are tested with a model reaction employing organic solvents.

6.
Nanomaterials (Basel) ; 13(16)2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37630899

RESUMO

Gas-fed reactors for CO2 reduction processes are a solid technology to mitigate CO2 accumulation in the atmosphere. However, since it is necessary to feed them with a pure CO2 stream, a highly energy-demanding process is required to separate CO2 from the flue gasses. Recently introduced bicarbonate zero-gap flow reactors are a valid solution to integrate carbon capture and valorization, with them being able to convert the CO2 capture medium (i.e., the bicarbonate solution) into added-value chemicals, such as CO, thus avoiding this expensive separation process. We report here a study on the influence of the electrode structure on the performance of a bicarbonate reactor in terms of Faradaic efficiency, activity, and CO2 utilization. In particular, the effect of catalyst mass loading and electrode permeability on bicarbonate electrolysis was investigated by exploiting three commercial carbon supports, and the results obtained were deepened via electrochemical impedance spectroscopy, which is introduced for the first time in the field of bicarbonate electrolyzers. As an outcome of the study, a novel low-loaded silver-based electrode fabricated via the sputtering deposition technique is proposed. The silver mass loading was optimized by increasing it from 116 µg/cm2 to 565 µg/cm2, thereby obtaining an important enhancement in selectivity (from 55% to 77%) and activity, while a further rise to 1.13 mg/cm2 did not provide significant improvements. The tremendous effect of the electrode permeability on activity and proficiency in releasing CO2 from the bicarbonate solution was shown. Hence, an increase in electrode permeability doubled the activity and boosted the production of in situ CO2 by 40%. The optimized Ag-electrode provided Faradaic efficiencies for CO close to 80% at a cell voltage of 3 V and under ambient conditions, with silver loading of 565 µg/cm2, the lowest value ever reported in the literature so far.

7.
Environ Sci Pollut Res Int ; 30(34): 81619-81634, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35834078

RESUMO

Herein, we report on the preparation of novel colloidal system based on carboxymethyl cellulose (CMC) and Pd nanoparticles (CMC@Pd NPs) via an ecofriendly auto-reduction process under mild conditions. In the first step, the follow-up of reduction and preparation of CMC anchored palladium nanoparticles (Pd NPs) in aqueous solution was carried out using UV-Vis spectroscopy. Thereafter, the monodispersed colloids were fully characterized by advanced analytical, structural, and morphological techniques. Based on Scherrer equation, the as-synthesized CMC@Pd NPs crystallite size was about 10.88 nm. Accordingly, the detailed microscopic study revealed CMC nanocolloids anchored uniform distribution of Pd NPs and the presence of CMC nanofilm as protective monolayer. To the best of our knowledge, the observed nanoscale properties are reported for the first time for CMC-M system. The performance of the as-synthesized CMC@Pd nanocolloids was first investigated in the reduction of 4-nitrophenol, as a model substrate, to 4-aminophenol using NaBH4 as a hydrogen source. Moreover, the catalytic reduction of various nitroarenes bearing electron withdrawing or donating substituents was carried out and monitored by UV-Vis spectroscopy. The chemo- and regioselectivity of the catalytic reduction in presence of CMC@Pd NPs were also studied. Consequently, the prepared CMC@Pd nanocolloids exhibit remarkable activity, good heterogeneity, and higher reusability and stability for the catalytic reduction reaction under mild conditions.


Assuntos
Nanopartículas Metálicas , Nanoestruturas/química , Nanopartículas Metálicas/química , Coloides/química , Hidrogenação , Paládio/química
8.
Front Plant Sci ; 14: 1303771, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38250450

RESUMO

Introduction: Given that rice serves as a crucial staple food for a significant portion of the global population and with the increasing number of individuals being diagnosed with diabetes, a primary objective in genetic improvement is to identify and cultivate low Glycemic Index (GI) varieties. This must be done while ensuring the preservation of grain quality. Methods: 25 Italian rice genotypes were characterized calculating their GI "in vivo" and, together with other 29 Italian and non-Italian genotypes they were studied to evaluate the grain inner structure through Field Emission Scanning Electron Microscopy (FESEM) technique. Using an ad-hoc developed algorithm, morphological features were extracted from the FESEM images, to be then inspected by means of multivariate data analysis methods. Results and Discussion: Large variability was observed in GI values (49 to 92 with respect to glucose), as well as in endosperm morphological features. According to the percentage of porosity is possible to distinguish approximately among rice varieties having a crystalline grain (< 1.7%), those intended for the preparation of risotto (> 5%), and a third group having intermediate characteristics. Waxy rice varieties were not united by a certain porosity level, but they shared a low starch granules eccentricity. With reference to morphological features, rice varieties with low GI (<55) seem to be characterized by large starch granules and low porosity values. Our data testify the wide variability of Italian rice cultivation giving interesting information for future breeding programs, finding that the structure of the endosperm can be regarded as a specific characteristic of each variety.

9.
Front Chem ; 10: 931767, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873051

RESUMO

Carbon monoxide (CO) and formic acid (HCOOH) are suggested to be the most convenient products from electrochemical reduction of CO2 according to techno-economic analysis. To date, tremendous advances have been achieved in the development of catalysts and processes, which make this research topic even more interesting to both academic and industrial sectors. In this work, we report nanostructured Cu-Al materials that are able to convert CO2 to CO and HCOOH with good efficiency. The catalysts are synthesized via a green microwave-assisted solvothermal route, and are composed of Cu2O crystals modified by Al. In KHCO3 electrolyte, these catalysts can selectively convert CO2 to HCOOH and syngas with H2/CO ratios between 1 and 2 approaching one unit faradaic efficiency in a wide potential range. Good current densities of 67 and 130 mA cm-2 are obtained at -1.0 V and -1.3 V vs. reversible hydrogen electrode (RHE), respectively. When switching the electrolyte to KOH, a significant selectivity up to 20% is observed for C2H4 formation, and the current densities achieve 146 and 222 mA cm-2 at -1.0 V and -1.3 V vs. RHE, respectively. Hence, the choice of electrolyte is critically important as that of catalyst in order to obtain targeted products at industrially relevant current densities.

10.
Materials (Basel) ; 15(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36363366

RESUMO

The direct hydrogenation of CO2 into dimethyl-ether (DME) has been studied in the presence of ferrierite-based CuZnZr hybrid catalysts. The samples were synthetized with three different techniques and two oxides/zeolite mass ratios. All the samples (calcined and spent) were properly characterized with different physico-chemical techniques for determining the textural and morphological nature of the catalytic surface. The experimental campaign was carried out in a fixed bed reactor at 2.5 MPa and stoichiometric H2/CO2 molar ratio, by varying both the reaction temperature (200-300 °C) and the spatial velocity (6.7-20.0 NL∙gcat-1∙h-1). Activity tests evidenced a superior activity of catalysts at a higher oxides/zeolite weight ratio, with a maximum DME yield as high as 4.5% (58.9 mgDME∙gcat-1∙h-1) exhibited by the sample prepared by gel-oxalate coprecipitation. At lower oxide/zeolite mass ratios, the catalysts prepared by impregnation and coprecipitation exhibited comparable DME productivity, whereas the physically mixed sample showed a high activity in CO2 hydrogenation but a low selectivity toward methanol and DME, ascribed to a minor synergy between the metal-oxide sites and the acid sites of the zeolite. Durability tests highlighted a progressive loss in activity with time on stream, mainly associated to the detrimental modifications under the adopted experimental conditions.

11.
Nanomaterials (Basel) ; 11(11)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34835851

RESUMO

The aim of this work is the optimization of electrospun polymeric nanofibers as an ideal reservoir of mixed electroactive consortia suitable to be used as anodes in Single Chamber Microbial Fuel Cells (SCMFCs). To reach this goal the microorganisms are directly embedded into properly designed nanofibers during the electrospinning process, obtaining so called nanofiber-based bio-composite (bio-NFs). This research approach allowed for the designing of an advanced nanostructured scaffold, able to block and store the living microorganisms inside the nanofibers and release them only after exposure to water-based solutions and electrolytes. To reach this goal, a water-based polymeric solution, containing 5 wt% of polyethylene oxide (PEO) and 10 wt% of environmental microorganisms, is used as the initial polymeric solution for the electrospinning process. PEO is selected as the water-soluble polymer to ensure the formation of nanofiber mats offering features of biocompatibility for bacteria proliferation, environment-friendliness and, high ionic conductivity. In the present work, bio-NFs, based on living microorganisms directly encapsulated into the PEO nanofiber mats, were analyzed and compared to PEO-NFs made of PEO only. Scanning electron microscopy allowed researchers to confirm the rise of a typical morphology for bio-NFs, evidencing the microorganisms' distribution inside them, as confirmed by fluorescence optical microscopy. Moreover, the latter technique, combined with optical density measurements, allowed for demonstrating that after electrospinning, the processed microorganisms preserved their proliferation capability, and their metabolic activity after exposure to the water-based electrolyte. To demonstrate that the energy-production functionality of exo-electrogenic microorganisms was preserved after the electrospinning process, the novel designed nanomaterials, were directly deposited onto carbon paper (CP), and were applied as anode electrodes in Single Chamber Microbial Fuel Cells (SCMFCs). It was possible to appreciate that the maximum power density reached by bio-NFs, which resulted in being double of the ones achieved with PEO-NFs and bare CP. SCMFCs with bio-NFs applied as anodic electrodes reached a current density value, close to (250 ± 5.2) mA m-2, which resulted in being stable over time and was comparable with the one obtained with carbon-based electrode, thus confirming the good performance of the whole device.

12.
Materials (Basel) ; 15(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35009156

RESUMO

In this study, we report on the facile synthesis of a novel electrocatalysts for the oxygen reduction reaction (ORR), based on reduced graphene oxide (RGO), functionalized with metallic and non-metallic elements. In particular, thanks to a fast one-pot microwave-assisted procedure, we induced, in the RGO graphene lattice, a combined doping with nitrogen and sulphur, and the simultaneous decoration with antimony oxide nanocrystals. The multi-doped-decorated material shows enhanced catalytic performance towards ORR, with respect to common nitrogen- or sulphur-doped carbon-based materials. The presence of co-doping is confirmed by transmission electron microscopy and X-ray photoelectron spectroscopy analysis. The detailed electrochemical characterization shows the simultaneous effects of dopant atoms on the catalytic behavior. In particular, the importance of nitrogen and sulphur atoms in driving the oxygen absorption, together with the role of antimony in enhancing the electrochemical performance toward the ORR, are discussed.

13.
Materials (Basel) ; 14(9)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062766

RESUMO

The electrocatalytic reduction of CO2 into useful fuels, exploiting rationally designed, inexpensive, active, and selective catalysts, produced through easy, quick, and scalable routes, represents a promising approach to face today's climate challenges and energy crisis. This work presents a facile strategy for the preparation of doped SnO2 as an efficient electrocatalyst for the CO2 reduction reaction to formic acid and carbon monoxide. Zn or Ti doping was introduced into a mesoporous SnO2 matrix via wet impregnation and atomic layer deposition. It was found that doping of SnO2 generates an increased amount of oxygen vacancies, which are believed to contribute to the CO2 conversion efficiency, and among others, Zn wet impregnation resulted the most efficient process, as confirmed by X-ray photoelectron spectroscopy analysis. Electrochemical characterization and active surface area evaluation show an increase of availability of surface active sites. In particular, the introduction of Zn elemental doping results in enhanced performance for formic acid formation, in comparison to un-doped SnO2 and other doped SnO2 catalysts. At -0.99 V versus reversible hydrogen electrode, the total faradaic efficiency for CO2 conversion reaches 80%, while the partial current density is 10.3 mA cm-2. These represent a 10% and a threefold increases for faradaic efficiency and current density, respectively, with respect to the reference un-doped sample. The enhancement of these characteristics relates to the improved charge transfer and conductivity with respect to bare SnO2.

14.
Nanomaterials (Basel) ; 11(1)2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33406608

RESUMO

We report on the preparation and stereolithographic 3D printing of a resin based on the composite between a poly(ethylene glycol) diacrylate (PEGDA) host matrix and a poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) filler, and the related cumulative volatile organic compounds' (VOCs) adsorbent properties. The control of all the steps for resin preparation and printing through morphological (SEM), structural (Raman spectroscopy) and functional (I/V measurements) characterizations allowed us to obtain conductive 3D objects of complex and reproducible geometry. These systems can interact with chemical vapors in the long term by providing a consistent and detectable variation of their structural and conductive characteristics. The materials and the manufacture protocol here reported thus propose an innovative and versatile technology for VOCs monitoring systems based on cumulative adsorption effects.

15.
ACS Omega ; 6(31): 20205-20217, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34395971

RESUMO

Miniaturized low-cost sensors for volatile organic compounds (VOCs) have the potentiality to become a fundamental tool for indoor and outdoor air quality monitoring, to significantly improve everyday life. Layered double hydroxides (LDHs) belong to the class of anionic clays and are largely employed for NO x detection, while few results are reported on VOCs. In this work, a novel LDH coprecipitation method is proposed. For the first time, a study comparing four LDHs (ZnAl-Cl, ZnFe-Cl, ZnAl-NO3, and MgAl-NO3) is carried out to investigate the sensing performances. As explored through several microscopy and spectroscopy analyses, LDHs show a morphology characterized by a large surface area and a three-dimensional hierarchical flowerlike architecture with micro- and nanopores that induce a fast diffusion and highly effective surface interaction of the target gases. The fabricated sensors, operating at room temperature, are able to reversibly and selectively detect acetone, ethanol, ammonia, and chlorine vapors, reaching significant sensing response values up to 6% at 21 °C. The results demonstrate that by changing the LDHs' composition, it is possible to modulate the sensitivity and selectivity of the sensor, helping the discrimination of different analytes, and the consequent integration on a sensor array paves the way for electronic nose development.

16.
Environ Pollut ; 267: 115609, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33254724

RESUMO

Plastics pollution has been recognized as a serious environmental problem. Nevertheless, new plastic uses, and applications are still increasing. Among these new applications, three-dimensional resin printers have increased their use and popularity around the world showing a vertiginous annual-sales growth. However, this technology is also the origin of residues generation from the alcohol cleaning procedure at the end of each printing. This alcohol/resin mixture can originate unintentionally very small plastic particles that usually are not correctly disposed, and as consequence, could be easily released to the environment. In this work, the nanoparticle generation from 3D printer's cleaning procedure and their physicochemical characterization is reported. Nano-sized plastic particles are easily formed when the resin residues are dissolved in alcohol and placed under UV radiation from sunlight. These nanoparticles can agglomerate in seawater showing an average hydrodynamic diameter around 1 µm, whereas the same nanoparticles remain dispersed in ultrapure water, showing a hydrodynamic diameter of ≈300 nm. The formed nanoparticles showed an isoelectric point close to pH 2, which can facilitate their interaction with other positively charged pollutants. Thus, these unexpected plastic nanoparticles can become an environmental issue and public health risk.


Assuntos
Poluentes Ambientais , Nanopartículas , Poluentes Químicos da Água , Animais , Poluição Ambiental , Etanol , Microplásticos , Plásticos
17.
ChemSusChem ; 13(16): 4128-4139, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32463150

RESUMO

A catalyst plays a key role in the electrochemical reduction of CO2 to valuable chemicals and fuels. Hence, the development of efficient and inexpensive catalysts has attracted great interest from both the academic and industrial communities. In this work, low-cost catalysts coupling Cu and Zn are designed and prepared with a green microwave-assisted route. The Cu to Zn ratio in the catalysts can be easily tuned by adjusting the precursor solutions. The obtained Cu-Zn catalysts are mainly composed of polycrystalline Cu particles and monocrystalline ZnO nanoparticles. The electrodes with optimized Cu-Zn catalysts show enhanced CO production rates of approximately 200 µmol h-1 cm-2 with respect to those with a monometallic Cu or ZnO catalyst under the same applied potential. At the bimetallic electrodes, ZnO-derived active sites are selective for CO formation and highly conductive Cu favors electron transport in the catalyst layer as well as charge transfer at the electrode/electrolyte interface.

18.
Materials (Basel) ; 13(1)2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31861538

RESUMO

Nanostructured materials possess unique physical-chemical characteristics and have attracted much attention, among others, in the field of energy conversion and storage devices, for the possibility to exploit both their bulk and surface properties, enabling enhanced electron and ion transport, fast diffusion of electrolytes, and consequently high efficiency in the electrochemical processes. In particular, titanium dioxide received great attention, both in the form of amorphous or crystalline material for these applications, due to the large variety of nanostructures in which it can be obtained. In this paper, a comparison of the performance of titanium dioxide prepared through the oxidation of Ti foils in hydrogen peroxide is reported. In particular, two thermal treatments have been compared. One, at 150 °C in Ar, which serves to remove the residual hydrogen peroxide, and the second, at 450 °C in air. The material, after the treatment at 150 °C, results to be not stoichiometric and amorphous, while the treatment at 450 °C provide TiO2 in the anatase form. It turns out that not-stoichiometric TiO2 results to be a highly stable material, being a promising candidate for applications as high power Li-ion batteries, while the anatase TiO2 shows lower cyclability, but it is still promising for energy-storage devices.

19.
ACS Appl Mater Interfaces ; 11(27): 24544-24551, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31199611

RESUMO

The present work proposes a versatile and efficient method to fabricate rubber nanofiber membranes with a controlled morphology and tailored functionality, based on the application of photoinduced thiol-ene cross-linking reactions to electrospun mats. Besides preventing the polymer cold flow and freezing the structure obtained by electrospinning, the photocuring step finely controls the morphology of the nanofiber mats, in terms of the fiber diameter up to the nanometer range and of the membrane porosity. Nanofiber membranes are also made chemically resistant, while retaining their flexibility. Finally, the proposed approach allows imparting specific functionalities to the rubber nanofibers: the type and concentration of the functional groups can be precisely tuned by changing process parameters (i.e., thiol/ene stoichiometric ratio and irradiation dose). Active chemical groups that remain available on the surface of the nanofibers can be used for further material modifications, as here proven by two target reactions. This key result is also demonstrated with electrospun membranes embedded into a microfluidic chip, opening the way to advanced functional flexible devices.

20.
Nat Commun ; 10(1): 3647, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31501423

RESUMO

Nanomechanical mass spectrometry is a recent technological breakthrough that enables the real-time analysis of single molecules. In contraposition to its extreme mass sensitivity is a limited capture cross-section that can hinder measurements in a practical setting. Here we show that weak-coupling between devices in resonator arrays can be used in nanomechanical mass spectrometry to parallelize the measurement. This coupling gives rise to asymmetric amplitude peaks in the vibrational response of a single nanomechanical resonator of the array, which coincide with the natural frequencies of all other resonators in the same array. A rigorous theoretical model is derived that explains the physical mechanisms and describes the practical features of this parallelization. We demonstrate the significance of this parallelization through inertial imaging of analytes adsorbed to all resonators of an array, with the possibility of simultaneously detecting resonators placed at distances a hundred times larger than their own physical size.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA