Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(23): e202219313, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37021740

RESUMO

N-Type thermoelectrics typically consist of small molecule dopant+polymer host. Only a few polymer dopant+polymer host systems have been reported, and these have lower thermoelectric parameters. N-type polymers with high crystallinity and order are generally used for high-conductivity ( σ ${\sigma }$ ) organic conductors. Few n-type polymers with only short-range lamellar stacking for high-conductivity materials have been reported. Here, we describe an n-type short-range lamellar-stacked all-polymer thermoelectric system with highest σ ${\sigma }$ of 78 S-1 , power factor (PF) of 163 µW m-1 K-2 , and maximum Figure of merit (ZT) of 0.53 at room temperature with a dopant/host ratio of 75 wt%. The minor effect of polymer dopant on the molecular arrangement of conjugated polymer PDPIN at high ratios, high doping capability, high Seebeck coefficient (S) absolute values relative to σ ${\sigma }$ , and atypical decreased thermal conductivity ( κ ${\kappa }$ ) with increased doping ratio contribute to the promising performance.

2.
Angew Chem Int Ed Engl ; 60(52): 27212-27219, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34695285

RESUMO

Achieving high electrical conductivity and thermoelectric power factor simultaneously for n-type organic thermoelectrics is still challenging. By constructing two new acceptor-acceptor n-type conjugated polymers with different backbones and introducing the 3,4,5-trimethoxyphenyl group to form the new n-type dopant 1,3-dimethyl-2-(3,4,5-trimethoxyphenyl)-2,3-dihydro-1H-benzo[d]imidazole (TP-DMBI), high electrical conductivity of 11 S cm-1 and power factor of 32 µW m-1 K-2 are achieved. Calculations using Density Functional Theory show that TP-DMBI presents a higher singly occupied molecular orbital (SOMO) energy level of -1.94 eV than that of the common dopant 4-(1, 3-dimethyl-2, 3-dihydro-1H-benzoimidazol-2-yl) phenyl) dimethylamine (N-DMBI) (-2.36 eV), which can result in a larger offset between the SOMO of dopant and lowest unoccupied molecular orbital (LUMO) of n-type polymers, though that effect may not be dominant in the present work. The doped polymer films exhibit higher Seebeck coefficient and power factor than films using N-DMBI at the same doping levels or similar electrical conductivity levels. Moreover, TP-DMBI doped polymer films offer much higher electron mobility of up to 0.53 cm2 V-1 s-1 than films with N-DMBI doping, demonstrating the potential of TP-DMBI, and 3,4,5-trialkoxy DMBIs more broadly, for high performance n-type organic thermoelectrics.

3.
Opt Express ; 26(21): 26933-26945, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30469771

RESUMO

Spectrally selective materials are of great interest for optoelectronic devices in which wavelength-selectivity of the photoactive material is necessary for applications such as multi-junction solar cells, narrow-band photodetectors, transparent photovoltaics, and tailored emission sources. Achieving controlled transparency or opacity within multiple wavelength bands in the absorption, reflection, and transmission spectra are difficult to achieve in traditional semiconductors that typically absorb at all energies above their electronic band gap and is generally realized by the use of external bandpass filters. Here, we propose an alternate method for achieving spectral selectivity in optoelectronic thin films: the use of photonic band engineering within the absorbing region of a semiconductor in which resonant photonic bands are strongly coupled to the external reflectivity and transmission spectra. As a first step, we use optical simulations to systematically study the effect of material absorption on the properties of the photonic bands in a photonic crystal slab structure. We find that adding a weak loss to the materials model does not appreciably change the frequencies of the photonic bands but does reduce the quality factor of the associated photonic modes. Critically, the radiating photonic bands induce strong Fano resonance features in the transmission and reflection spectra, even in the presence of material absorption, due to coupling between the bands and external electromagnetic plane waves. These resonances can be tuned by adjusting the photonic crystal structural properties to induce spectral selectivity in the absorbing region of semiconductors. Lastly, we demonstrate this tuning method experimentally by fabricating a proof-of-principle photonic structure consisting of a self-assembled polystyrene bead monolayer infiltrated with PbS CQDs that displays both near-infrared absorption enhancement and visible transparency enhancement over a homogeneous control film, qualitatively matching predictions and showing promise for optoelectronic applications.

4.
Nanoscale ; 16(17): 8273-8285, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38592692

RESUMO

The development of lead sulfide (PbS) colloidal quantum dot (CQD) solar cells has led to significant power conversion efficiency (PCE) improvements in recent years, with record efficiencies now over 15%. Many of the recent advances in improving PCE have focused on improving the interface between the PbS CQD active layer and the zinc oxide (ZnO) electron transport layer (ETL). Proper optimization of the ZnO ETL also increases yield, or the percentage of functioning devices per fabrication run. Simultaneous improvements in both PCE and yield will be critical as the field approaches commercialization. This review highlights recent advances in the synthesis of ZnO ETLs and discusses the impact and critical role of ZnO synthesis conditions on the PCE and yield of PbS CQD solar cells.

5.
J Biomed Opt ; 28(9): 097001, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37671115

RESUMO

Significance: Multispectral photoacoustic imaging has the potential to identify lipid-rich, myelinated nerve tissue in an interventional or surgical setting (e.g., to guide intraoperative decisions when exposing a nerve during reconstructive surgery by limiting operations to nerves needing repair, with no impact to healthy or regenerating nerves). Lipids have two optical absorption peaks within the NIR-II and NIR-III windows (i.e., 1000 to 1350 nm and 1550 to 1870 nm wavelength ranges, respectively) which can be exploited to obtain photoacoustic images. However, nerve visualization within the NIR-III window is more desirable due to higher lipid absorption peaks and a corresponding valley in the optical absorption of water. Aim: We present the first known optical absorption characterizations, photoacoustic spectral demonstrations, and histological validations to support in vivo photoacoustic nerve imaging in the NIR-III window. Approach: Four in vivo swine peripheral nerves were excised, and the optical absorption spectra of these fresh ex vivo nerves were characterized at wavelengths spanning 800 to 1880 nm, to provide the first known nerve optical absorbance spectra and to enable photoacoustic amplitude spectra characterization with the most optimal wavelength range. Prior to excision, the latter two of the four nerves were surrounded by aqueous, lipid-free, agarose blocks (i.e., 3% w/v agarose) to enhance acoustic coupling during in vivo multispectral photoacoustic imaging using the optimal NIR-III wavelengths (i.e., 1630 to 1850 nm) identified in the ex vivo studies. Results: There was a verified characteristic lipid absorption peak at 1725 nm for each ex vivo nerve. Results additionally suggest that the 1630 to 1850 nm wavelength range can successfully visualize and differentiate lipid-rich nerves from surrounding water-containing and lipid-deficient tissues and materials. Conclusions: Photoacoustic imaging using the optimal wavelengths identified and demonstrated for nerves holds promise for detection of myelination in exposed and isolated nerve tissue during a nerve repair surgery, with possible future implications for other surgeries and other optics-based technologies.


Assuntos
Acústica , Bainha de Mielina , Animais , Suínos , Sefarose , Análise Espectral , Água
6.
Adv Mater ; 34(27): e2201062, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35441380

RESUMO

A novel n-type copolymer dopant polystyrene-poly(4-vinyl-N-hexylpyridinium fluoride) (PSpF) with fluoride anions is designed and synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. This is thought to be the first polymeric fluoride dopant. Electrical conductivity of 4.2 S cm-1 and high power factor of 67 µW m-1 K-2 are achieved for PSpF-doped polymer films, with a corresponding decrease in thermal conductivity as the PSpF concentration is increased, giving the highest ZT of 0.1. An especially high electrical conductivity of 58 S cm-1 at 88 °C and outstanding thermal stability are recorded. Further, organic transistors of PSpF-doped thin films exhibit high electron mobility and Hall mobility of 0.86 and 1.70 cm2 V-1 s-1 , respectively. The results suggest that polystyrene-poly(vinylpyridinium) salt copolymers with fluoride anions are promising for high-performance n-type all-polymer thermoelectrics. This work provides a new way to realize organic thermoelectrics with high conductivity relative to the Seebeck coefficient, high power factor, thermal stability, and broad processing window.

8.
Neurotherapeutics ; 8(4): 744-52, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21901585

RESUMO

Neurological syndromes, such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, Huntington's disease, amyotrophic lateral sclerosis, and lysosomal storage disorders, such as Battens disease, are devastating because they result in increasing loss of cognitive and physical function. Sadly, no drugs are currently available to halt their progression. The relative paucity of curative approaches for these and other conditions of the nervous system have led to a widespread evaluation of alternative treatment modalities including cell-based interventions. Several cell types have been tested successfully in animal models where safety and efficacy have been demonstrated. Early clinical trials have also been initiated in humans, and some have shown a degree of success albeit on a more limited scale than in animal experiments. Recent demonstrations that pluripotent stem cells, such as embryonic stem cells and induced pluripotent stem cells, can differentiate into a variety of specific neural phenotypes has stimulated worldwide enthusiasm for developing cell-based intervention of neurological disease. Indeed, several groups are preparing investigational new drug applications to treat disorders as diverse as macular degeneration, lysosomal storage diseases, and Parkinson's disease. It is noteworthy that cell replacement therapies for neurological conditions face key challenges, some of which are unique, because of the development and organization of the nervous system, its metabolism, and connectivity. Choice of the cell (or cells), the process of manufacturing them, defining the delivery pathway, developing and testing in an appropriate preclinical model, selecting a patient population, and visualizing and following or monitoring patients all pose specific issues as related to the central and peripheral nervous systems. In this review, we address a myriad of challenges that are solvable, but require careful planning and attention to the special demands of the human nervous system.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Doenças do Sistema Nervoso/cirurgia , Células-Tronco/fisiologia , Animais , Diferenciação Celular , Humanos
9.
Regen Med ; 4(1): 129-31, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19105622

RESUMO

The Second Biennial International Collaborative Symposium on Stem Cell Research, held in Seoul, Korea, on 18-19 September 2008, showcased talks by a roster of established and emerging leaders in stem cell biology, and demonstrated how far and fast the field has moved in the last 2 years.


Assuntos
Medicina Regenerativa/tendências , Células-Tronco/fisiologia , Pesquisa Biomédica , Comportamento Cooperativo , Humanos , Coreia (Geográfico) , Transplante de Células-Tronco , Células-Tronco/citologia , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA