Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977301

RESUMO

Overexpression of the agouti-signalling protein (asip1), an endogenous melanocortin antagonist, under the control of a constitutive promoter in zebrafish [Tg(Xla.Eef1a1:Cau.Asip1]iim4] (asip1-Tg) increases food intake by reducing sensitivity of the central satiety systems and abolish circadian activity rhythms. The phenotype also shows increased linear growth and body weight, yet no enhanced aggressiveness in dyadic fights is observed. In fact, asip1-Tg animals choose to flee to safer areas rather than face a potential threat thus suggesting a potential anxiety-like behaviour (ALB). Standard behavioural tests, i.e. the open field test (OFT), the novel object test (NOT) and the novel tank dive test (NTDT) were used to investigate thigmotaxis and ALB in male and female zebrafish. Results showed that the asip1-Tg strain exhibited severe ALB in every test, mainly characterised by pronounced freezing behaviour and increased linear and angular swimming velocities. asip1-Tg animals exhibited low central serotonin (5HT) and dopamine (DA) levels and high turnover rates, thus suggesting that central monoaminergic pathways might mediate melanocortin antagonist-induced ALB. Accordingly, the treatment of asip1-Tg animals with fluoxetine, a selective serotonin reuptake inhibitor (SSRI), reversed the ALB phenotype in NTDT as well as 5-HT turnover. Genomic and anatomical data further supported neuronal interaction between melanocortinergic and serotonergic systems. These results suggest that inhibition of the melanocortin system by ubiquitous overexpression of endogenous antagonist has an anxiogenic effect mediated by serotonergic transmission.Significance statement In this paper, we show that inhibition of the melanocortin system by ubiquitous overexpression of endogenous antagonists has a potent anxiogenic effect mediated by serotonergic transmission in zebrafish. asip1-overexpressing fish (asip1-Tg) also exhibit a severe disruption of the central satiety system, leading to increased feed intake and abolishing circadian locomotor activity patterns. The melanocortin system plays a key role in the control of hunger, and data suggest that the anxiety-like behaviour in asip1-Tg may be related to the feeding anxiety induced by negative energy balance states, which promote constant foraging and thus disrupt activity rhythms. This makes asip1-Tg animals an excellent model to study dieting-induced anxiety, one of the major causes of dieting failure.

2.
J Pineal Res ; 76(1): e12939, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38241679

RESUMO

Temporal signals such as light and temperature cycles profoundly modulate animal physiology and behaviour. Via endogenous timing mechanisms which are regulated by these signals, organisms can anticipate cyclic environmental changes and thereby enhance their fitness. The pineal gland in fish, through the secretion of melatonin, appears to play a critical role in the circadian system, most likely acting as an element of the circadian clock system. An important output of this circadian clock is the locomotor activity circadian rhythm which is adapted to the photoperiod and thus determines whether animals are diurnal or nocturnal. By using a genetically modified zebrafish strain known as Tg (Xla.Eef1a1:Cau.asip1)iim04, which expresses a higher level of the agouti signalling protein 1 (Asip1), an endogenous antagonist of the melanocortin system, we observed a complete disruption of locomotor activity patterns, which correlates with the ablation of the melatonin daily rhythm. Consistent with this, in vitro experiments also demonstrated that Asip1 inhibits melatonin secretion from the zebrafish pineal gland, most likely through the melanocortin receptors expressed in this gland. Asip1 overexpression also disrupted the expression of core clock genes, including per1a and clock1a, thus blunting circadian oscillation. Collectively, these results implicate the melanocortin system as playing an important role in modulating pineal physiology and, therefore, circadian organisation in zebrafish.


Assuntos
Melanocortinas , Melatonina , Glândula Pineal , Animais , Proteína Agouti Sinalizadora/genética , Proteína Agouti Sinalizadora/metabolismo , Ritmo Circadiano/fisiologia , Locomoção/fisiologia , Melatonina/metabolismo , Glândula Pineal/metabolismo , Peixe-Zebra/genética , Melanocortinas/metabolismo
3.
Int J Mol Sci ; 24(15)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37569692

RESUMO

Over the last decade, the zebrafish has emerged as an important model organism for behavioural studies and neurological disorders, as well as for the study of metabolic diseases. This makes zebrafish an alternative model for studying the effects of energy disruption and nutritional quality on a wide range of behavioural aspects. Here, we used the zebrafish model to study how obesity induced by overfeeding regulates emotional and cognitive processes. Two groups of fish (n = 24 per group) were fed at 2% (CTRL) and 8% (overfeeding-induced obesity, OIO) for 8 weeks and tested for anxiety-like behaviour using the novel tank diving test (NTDT). Fish were first tested using a short-term memory test (STM) and then trained for four days for a long-term memory test (LTM). At the end of the experiment, fish were euthanised for biometric sampling, total lipid content, and triglyceride analysis. In addition, brains (eight per treatment) were dissected for HPLC determination of monoamines. Overfeeding induced faster growth and obesity, as indicated by increased total lipid content. OIO had no effect on anxiety-like behaviour. Animals were then tested for cognitive function (learning and memory) using the aversive learning test in Zantiks AD units. Results show that both OIO and CTRL animals were able to associate the aversive stimulus with the conditioned stimulus (conditioned learning), but OIO impaired STM regardless of fish sex, revealing the effects of obesity on cognitive processes in zebrafish. Obese fish did not show a deficiency in monoaminergic transmission, as revealed by quantification of total brain levels of dopamine and serotonin and their metabolites. This provides a reliable protocol for assessing the effect of metabolic disease on cognitive and behavioural function, supporting zebrafish as a model for behavioural and cognitive neuroscience.


Assuntos
Cognição , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Obesidade/complicações , Ansiedade/etiologia , Triglicerídeos/farmacologia , Comportamento Animal
4.
Horm Behav ; 146: 105277, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36356457

RESUMO

The mechanisms involved in hedonic regulation of food intake, including endocannabinoid system (ECs) are scarcely known in fish. We recently demonstrate in rainbow trout the presence of a rewarding response mediated by ECs in hypothalamus and telencephalon when fish fed a lipid-enriched diet, and that central administration of main agonists of ECs namely AEA or 2-AG exert a bimodal effect on feed intake in fish with low doses inducing an increase that disappears with the high dose of both endocannabinoids (EC). To assess the precise involvement of the different receptors of the ECs (CNR1, TRPV1, and GPR55) in this response we injected intracerebroventricularly AEA or 2-AG in the absence/presence of specific receptor antagonists (AM251, capsazepine, and ML193; respectively). The presence of antagonists clearly counteracts the effect of EC supporting the specificity of EC action inducing changes not only in ECs but also in GABA and glutamate metabolism ultimately leading to the increase observed in food intake response.


Assuntos
Endocanabinoides , Oncorhynchus mykiss , Animais , Endocanabinoides/farmacologia , Endocanabinoides/metabolismo , Oncorhynchus mykiss/fisiologia , Hipotálamo/metabolismo , Ingestão de Alimentos , Telencéfalo
5.
Nutr Neurosci ; 25(6): 1265-1276, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33373267

RESUMO

BACKGROUND: The mechanisms that regulate food intake are very complex since they comprise several neuroendocrine and metabolic signals responding to energetic or reward requirements. Previous studies in mammals indicate that cannabinoid system is implicated in homeostatic and hedonic regulation of food intake. In fish, several studies describe the components of this system, but only a little information is available regarding their role in food intake and energy balance regulation. OBJECTIVES: The objective of this study was to evaluate the main components of cannabinoid system related to feeding conditions in fish. METHODS: Samples of blood and different brain areas (telencephalon and hypothalamus) were taken from rainbow trout under different nutritional status (fasted, fed and refed) at different periprandial times (-30, 0, +30 and +180 min). RESULTS: Changes in AEA and 2-AG levels were observed in plasma related to the nutritional status and the sampling times assessed. At central levels, changes in endocannabinoids levels were observed in hypothalamus and in mRNA abundance of cnr1 and tprv1 in telencephalon and faah, gpr55 and fos in both brain areas. DISCUSSION: The results obtained suggest a role of endocannabinoid system in the regulation of food intake in fish at central level but further studies are required to fully elucidate the mechanisms involved.


Assuntos
Canabinoides , Oncorhynchus mykiss , Animais , Canabinoides/metabolismo , Ingestão de Alimentos/fisiologia , Endocanabinoides , Hipotálamo/metabolismo , Mamíferos , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/metabolismo
6.
Aquac Nutr ; 2022: 7509382, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36860456

RESUMO

This study was aimed at clarifying the importance of a mechanistic target of rapamycin (mTOR) in the central orexigenic effect of valine in fish. For this, rainbow trout (Oncorhynchus mykiss) were intracerebroventricularly (ICV) injected with valine alone or in the presence of rapamycin as the mTOR inhibitor, and two experiments were performed. In the first experiment, we evaluated feed intake levels. In the second experiment, we evaluated in the hypothalamus and telencephalon the following: (1) the phosphorylation status of mTOR and its downstream effectors ribosomal protein S6 and p70 S6 kinase 1 (S6K1), (2) the abundance and phosphorylation status of transcription factors involved in appetite regulation, and (3) the mRNA levels of key neuropeptides associated with homeostatic regulation of feed intake in fish. Rising central levels of valine clearly resulted in an orexigenic response in rainbow trout. This response occurred in parallel with mTOR activation in both the hypothalamus and telencephalon, as supported by depressant changes in proteins involved in mTOR signalling (S6 and S6K1). Also, these changes disappeared in the presence of rapamycin. However, it is not clear which precise mechanisms link the activation of mTOR and the alteration in feed intake levels since we did not observe changes in mRNA levels of appetite-regulatory neuropeptides as well as in the phosphorylation status and levels of integrative proteins.

7.
Horm Behav ; 134: 105021, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34242873

RESUMO

The endocannabinoid system (ECs) is known to participate in several processes in mammals related to synaptic signaling including regulation of food intake, appetite and energy balance. In fish, the relationship of ECs with food intake regulation is poorly understood. In the present study, we assessed in rainbow trout Oncorhynchus mykiss the effect of intracerebroventricular administration (ICV) of low and high doses of the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) on food intake. We assessed endocannabinoid levels in hypothalamus, telencephalon and plasma as well as the effect of AEA and 2-AG administration at central level on gene expression of receptors involved in ECs (cnr1, gpr55 and trpv1) and markers of neural activity (fos, ntrk2 and GABA-related genes). The results obtained indicate that whereas high doses of endocannabinoids did not elicit changes in food intake levels, low doses of the endocannabinoids produce an orexigenic effect that could be due to a possible inhibition of gabaergic neurotransmission and the modulation of neural plasticity in brain areas related to appetite control, such as hypothalamus and telencephalon.


Assuntos
Endocanabinoides , Oncorhynchus mykiss , Animais , Regulação do Apetite , Ingestão de Alimentos , Endocanabinoides/farmacologia , Hipotálamo
8.
J Exp Biol ; 224(13)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34114000

RESUMO

We evaluated the role of the G protein-coupled receptors GPR84 and GPR119 in food intake regulation in fish using rainbow trout (Oncorhynchus mykiss) as a model. In the first experiment, we assessed the effects on food intake of intracerebroventricular treatment with agonists of these receptors. In the second experiment, we assessed the impact of the same treatments on mRNA abundance in the hypothalamus and hindbrain of neuropeptides involved in the metabolic control of food intake (npy, agrp1, pomca1 and cartpt) as well as in changes in parameters related to signalling pathways and transcription factors involved in the integrative response leading to neuropeptide production. Treatment with both agonists elicited an anorectic response in rainbow trout attributable to changes observed in the mRNA abundance of the four neuropeptides. Changes in neuropeptides relate to changes observed in mRNA abundance and phosphorylation status of the transcription factor FOXO1. These changes occurred in parallel with changes in the phosphorylation status of AMPKα and Akt, the mRNA abundance of mTOR as well as signalling pathways related to PLCß and IP3. These results allow us to suggest that (1) at least part of the capacity of fish brain to sense medium-chain fatty acids such as octanoate depends on the function of GPR84, and (2) the capacity of fish brain to sense N-acylethanolamides or triglyceride-derived molecules occurs through the binding of these ligands to GPR119.


Assuntos
Oncorhynchus mykiss , Animais , Regulação do Apetite , Ingestão de Alimentos , Hipotálamo/metabolismo , Oncorhynchus mykiss/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
9.
Gen Comp Endocrinol ; 304: 113716, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33484717

RESUMO

The incretin, glucagon-like peptide-1 (GLP-1) is a major player in the gut-brain axis regulation of energy balance and in fish it seems to exert a negative influence on food intake. In this study, we investigated the role of the brain serotonergic system in the effects promoted by a peripheral GLP-1 injection on food intake in rainbow trout (Oncorhynchus mykiss). For this, in a first experiment the incretin was intraperitoneally injected (100 ng/g body weight) alone or in combination with a 5HT2C receptor antagonist (SB 242084, 1 µg/g body weight) and food intake was measured 30, 90, and 180 min later. In a second experiment, we studied the effect of these treatments on mRNA abundance of hypothalamic neuropeptides that control food intake. In addition, the effect of GLP-1 on serotonin metabolism was assessed in hindbrain and hypothalamus. Our results show that GLP-1 induced a significant food intake inhibition, which agreed with the increased expression of anorexigenic neuropeptides pomc and cart in the hypothalamus. Furthermore, GLP-1 stimulated the synthesis of serotonin in the hypothalamus, which might be indicative of a higher use of the neurotransmitter. The effects of GLP-1 on food intake were partially reversed when a serotonin receptor antagonist, SB 242084, was previously administered to trout. This antagonist also reversed the stimulatory effect of the hormone in hypothalamic pomca1 mRNA abundance. We conclude that hypothalamic serotonergic pathways are essential for mediating the effects of GLP-1 on food intake in rainbow trout. In addition, the 5HT2C receptor subtype seems to have a prominent role in the inhibition of food intake induced by GLP-1 in this species.


Assuntos
Oncorhynchus mykiss , Animais , Ingestão de Alimentos , Peptídeo 1 Semelhante ao Glucagon , Hipotálamo , Serotonina
10.
Horm Behav ; 125: 104825, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32771417

RESUMO

The endocannabinoid system (ECs) is a well known contributor to the hedonic regulation of food intake (FI) in mammals whereas in fish, the knowledge regarding hedonic mechanisms that control FI is limited. Previous studies reported the involvement of ECs in FI regulation in fish since anandamide (AEA) treatment induced enhanced FI and changes of mRNA abundance of appetite-related neuropeptides through cannabinoid receptor 1 (cnr1). However, no previous studies in fish evaluated the impact of palatable food like high-fat diets (HFD) on mechanisms involved in hedonic regulation of FI including the possible involvement of ECs. Therefore, we aimed to evaluate the effect of feeding a HFD on the response of ECs in rainbow trout (Oncorhynchus mykiss). First, we demonstrated a higher intake over 4 days of HFD compared with a control diet (CD). Then, we evaluated the postprandial response (1, 3 and 6 h) of components of the ECs in plasma, hypothalamus, and telencephalon after feeding fish with CD and HFD. The results obtained indicate that the increased FI of HFD occurred along with increased levels of 2-arachidonoylglycerol (2-AG) and AEA in plasma and in brain areas like hypothalamus and telencephalon putatively involved in hedonic regulation of FI in fish. Decreased mRNA abundance of EC receptors like cnr1, gpr55 and trpv1 suggest a feed-back counter-regulatory mechanism in response to the increased levels of EC. Furthermore, the results also suggest that neural activity players associated to FI regulation in mammals as cFOS, γ-Amino butyric acid (GABA) and brain derived neurotrophic factor (BDNF)/neurotrophic receptor tyrosine kinase (NTRK) systems could be involved in the hedonic eating response to a palatable diet in fish.


Assuntos
Dieta Hiperlipídica , Endocanabinoides/metabolismo , Oncorhynchus mykiss/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Animais , Apetite/efeitos dos fármacos , Apetite/genética , Regulação do Apetite/efeitos dos fármacos , Regulação do Apetite/fisiologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Gorduras na Dieta/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/genética , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Neuropeptídeos/efeitos dos fármacos , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Oncorhynchus mykiss/fisiologia , Receptor CB1 de Canabinoide/genética , Telencéfalo/efeitos dos fármacos , Telencéfalo/metabolismo
11.
J Exp Biol ; 223(Pt 17)2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32665445

RESUMO

We hypothesized that the free fatty acid receptors FFA1 and FFA4 might be involved in the anorectic response observed in fish after rising levels of long-chain fatty acids (LCFAs) such as oleate. In one experiment we demonstrated that intracerebroventricular (i.c.v.) treatment of rainbow trout with FFA1 and FFA4 agonists elicited an anorectic response 2, 6 and 24 h after treatment. In a second experiment, the same i.c.v. treatment resulted after 2 h in an enhancement in the mRNA abundance of anorexigenic neuropeptides pomca1 and cartpt and a decrease in the values of orexigenic peptides npy and agrp1 These changes occurred in parallel with those observed in the mRNA abundance and/or protein levels of the transcription factors Creb, Bsx and FoxO1, protein levels and phosphorylation status of Ampkα and Akt, and mRNA abundance of plcb1 and itrp3 Finally, we assessed in a third experiment the response of all these parameters after 2 h of i.c.v. treatment with oleate (the endogenous ligand of both free fatty acid receptors) alone or in the presence of FFA1 and FFA4 antagonists. Most effects of oleate disappeared in the presence of FFA1 and FFA4 antagonists. The evidence obtained supports the involvement of FFA1 and FFA4 in fatty acid sensing in fish brain, and thus involvement in food intake regulation through mechanisms not exactly comparable (differential response of neuropeptides and cellular signalling) to those known in mammals.


Assuntos
Regulação do Apetite , Oncorhynchus mykiss , Animais , Encéfalo/metabolismo , Ácidos Graxos , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/metabolismo , RNA Mensageiro , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
12.
Front Endocrinol (Lausanne) ; 14: 1241019, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37693350

RESUMO

This study explored changes in brain serotonin content and activity together with hypothalamic neuropeptide mRNA abundance around feeding time in rainbow trout, as well as the effect of one-day fasting. Groups of trout fed at two (ZT2) and six (ZT6) hours after lights on were sampled from 90 minutes before to 240 minutes after feeding, while additional groups of non-fed trout were also included in the study. Changes in brain amine and metabolite contents were measured in hindbrain, diencephalon and telencephalon, while in the diencephalon the mRNA abundance of tryptophan hydroxylase (tph1, tph2), serotonin receptors (5htr1a, 5htr1b and 5htr2c) and several neuropeptides (npy, agrp1, cartpt, pomca1, crfb) involved in the control of food intake were also assessed. The results showed changes in the hypothalamic neuropeptides that were consistent with the expected role for each in the regulation of food intake in rainbow trout. Serotonergic activity increased rapidly at the time of food intake in the diencephalon and hindbrain and remained high for much of the postprandial period. This increase in serotonin abundance was concomitant with elevated levels of pomca1 mRNA in the diencephalon, suggesting that serotonin might act on brain neuropeptides to promote a satiety profile. Furthermore, serotonin synthesis and neuronal activity appear to increase already before the time of feeding, suggesting additional functions for this amine before and during food intake. Exploration of serotonin receptors in the diencephalon revealed only small changes for gene expression of 5htr1b and 5htr2c receptors during the postprandial phase. Therefore, the results suggest that serotonin may play a relevant role in the regulation of feeding behavior in rainbow trout during periprandial time, but a better understanding of its interaction with brain centers involved in receiving and processing food-related signals is still needed.


Assuntos
Neuropeptídeos , Oncorhynchus mykiss , Animais , Serotonina , Neuropeptídeos/genética , Encéfalo , Aminas , Ingestão de Alimentos
13.
Front Physiol ; 13: 800218, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35299666

RESUMO

We hypothesize that opioids are involved in the regulation of food intake in fish through homeostatic and hedonic mechanisms. Therefore, we evaluated in rainbow trout (Oncorhynchus mykiss) hypothalamus and telencephalon changes in precursors, endogenous ligands and receptors of the opioid system under different situations aimed to induce changes in the homeostatic (through fasted/fed/refed fish) and hedonic (through feeding fish a control or a palatable high-fat diet) regulation of food intake. No major changes occurred in parameters assessed related with the nutritional condition of fish (fasted/fed/refed), allowing us to suggest that the opioid system seems not to have an important role in the homeostatic regulation of food intake in rainbow trout. The responses observed in telencephalon of rainbow trout fed the palatable high-fat diet included a decrease in mRNA abundance of the opioid precursor penka, in a way similar to that known in mammals, and increased mRNA abundance of the opioid receptors oprd1 and oprk1 supporting a role for telencephalic opioid system in the hedonic regulation of food intake in fish.

14.
Brain Struct Funct ; 226(7): 2265-2278, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34213591

RESUMO

Serotonin (5-HT) is one of the principal neurotransmitters in the nervous system of vertebrates. It is initially synthesized by hydroxylation of tryptophan (Trp) by means of tryptophan hydroxylase or TPH which is the rate-limiting enzyme in the production of 5-HT. In most vertebrates, there are two isoforms of TPH present, TPH1 and TPH2, which exhibit different catalytic or substrate specificity as well as different expression domains. Studies carried out in mammals show that only tph2 is expressed in the brain whereas tph1-mRNA is primarily localized in the enterochromaffin cells and pineal gland. A large number of neurons are also considered to be serotonergic or "pseudo-serotonergic" as they accumulate and release 5-HT yet do not produce it as no amine-synthetic enzymes are expressed, yet a combination of 5-HT transporters is observed. Therefore, tph expression is considered to be the only specific marker of 5-HT-producing neurons that can discriminate true 5-HT from pseudo-serotonergic neurons. This work examined in situ hybridization to study the mRNA distribution of one paralogue for tph1 and tph2 in the central nervous system of rainbow trout. Results show a segregated expression for both paralogues that predominantly match previous immunocytochemical studies. This study thus adds valuable information to the scarce analyses focusing on the central distribution of the expression of serotonergic markers, particularly tphs, in the vertebrate brain thus characterizing the true serotonergic brain territories.


Assuntos
Oncorhynchus mykiss , Animais , Encéfalo/metabolismo , Hibridização In Situ , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/metabolismo , Isoformas de Proteínas/metabolismo , RNA Mensageiro , Neurônios Serotoninérgicos/metabolismo , Serotonina , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo
15.
PLoS One ; 14(7): e0219153, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31276539

RESUMO

In fish, the circadian clock represents a key regulator of many aspects of biology and is controlled by combinations of abiotic and biotic factors. These environmental factors are frequently manipulated in fish farms as part of strategies designed to maximize productivity. The flatfish turbot, Scophthalmus maximus, represents one of the most important species within the aquaculture sector in Asia and Europe. Despite the strategic importance of this species, the function and regulation of the turbot circadian system remains poorly understood. Here, we have characterized the core circadian clock genes, clock1, per1, per2 and cry1 in turbot and have studied their daily expression in various tissues under a range of lighting conditions and feeding regimes. We have also explored the influence of light and feeding time on locomotor activity. Rhythmic expression of the four core clock genes was observed in all tissues studied under light dark (LD) cycle conditions. Rhythmicity of clock gene expression persisted upon transfer to artificial free running, constant conditions confirming their endogenous circadian clock control. Furthermore, turbot showed daily cycles of locomotor activity and food anticipatory activity (FAA) under LD and scheduled-feeding, with the activity phase as well as FAA coinciding with and being dependent upon exposure to light. Thus, while FAA was absent under constant dark (DD) conditions, it was still detected in constant light (LL). In contrast, general locomotor activity was arrhythmic in both constant darkness and constant light, pointing to a major contribution of light, in concert with the circadian clock, in timing locomotor activity in this species. Our data represents an important contribution to our understanding of the circadian timing system in the turbot and thereby the optimization of rearing protocols and the improvement of the well-being of turbot within fish farming environments.


Assuntos
Proteínas CLOCK/genética , Clonagem Molecular/métodos , Linguados/fisiologia , Animais , Comportamento Animal , Relógios Circadianos , Ritmo Circadiano , Comportamento Alimentar , Proteínas de Peixes/genética , Linguados/genética , Regulação da Expressão Gênica , Fotoperíodo , Distribuição Tecidual
16.
Front Physiol ; 10: 611, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31164837

RESUMO

In vertebrates stress negatively affects body homeostasis and triggers a battery of metabolic responses, with liver playing a key role. This organ responds with altered metabolism, leading the animal to cope with the stress situation, which involves carbohydrate and lipid mobilization. However, metabolism among other physiological functions is under circadian control within the liver. Then, metabolic homeostasis at system level involves circadian timing systems within tissues and cells, and collaborate with each other. During chronic stress, cortisol maintains the liver metabolic response by modulating carbohydrate- and lipid-related metabolism. Stress also disrupts the circadian oscillator within the liver in mammals, whereas little information is available in other vertebrates, such as fish. To raise the complexity of this process, other candidates may mediate in such effect of stress. In fact, sirtuin1, a link between cellular sensing of energy status and circadian clocks, participates in the response to stress in mammals, but no information is available in fish. Considering the role played by liver in providing energy for the animal to deal with an adverse situation, and the existence of a circadian oscillator within this tissue, jeopardized liver circadian physiology during stress exposure might be expected. Whether the physiological response to stress is a well conserved process through the phylogeny and the mechanisms involved in such response is a question that remains to be elucidated. Then, we provide information at this respect in mammals and show comparable results in rainbow trout as fish animal model. Similar to that in mammals, stress triggers a series of responses in fish that leads the animal to cope with the adverse situation. Stress influences liver physiology in fish, affecting carbohydrate and lipid metabolism-related parameters, and the circadian oscillator as well. In a similar way than that of mammals different mediators participate in the response of liver circadian physiology to stress in fish. Among them, we confirm for the teleost rainbow trout a role of nuclear receptors (rev-erbß), cortisol, and sirt1. However, further research is needed to evaluate the independent effect of each one, or the existence of any interaction among them.

17.
Artigo em Inglês | MEDLINE | ID: mdl-30405535

RESUMO

The homeostatic regulation of food intake relies on a complex network involving peripheral and central signals that are integrated in the hypothalamus which in turn responds with the release of orexigenic or anorexigenic neuropeptides that eventually promote or inhibit appetite. Under stress conditions, the mechanisms that control food intake in fish are deregulated and the appetite signals in the brain do not operate as in control conditions resulting in changes in the expression of the appetite-related neuropeptides and usually a decreased food intake. The effect of stress on the mechanisms that regulate food intake in fish seems to be mediated in part by the corticotropin-releasing factor (CRF), an anorexigenic neuropeptide involved in the activation of the HPI axis during the physiological stress response. Furthermore, the melanocortin system is also involved in the connection between the HPI axis and the central control of appetite. The dopaminergic and serotonergic systems are activated during the stress response and they have also been related to the control of food intake. In addition, the central and peripheral mechanisms that mediate nutrient sensing capacity and hence implicated in the metabolic control of appetite are inhibited in fish under stress conditions. Finally, stress also affects peripheral endocrine signals such as leptin. In the present minireview, we summarize the knowledge achieved in recent years regarding the interaction of stress with the different mechanisms that regulate food intake in fish.

18.
Chronobiol Int ; 35(8): 1122-1141, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29737878

RESUMO

Stress is conditioning animal welfare by negatively affecting a wide range of physiological and behavioral functions. This may be applied to circadian physiology and food intake. Cortisol, the stress-related hormone, may mediate such effect of stress, but other indirect mediators might be considered, such as sirtuin1. Then, either the independent modulatory effect or the existence of any interaction between mediators may be responsible. The circadian system is the main modulator of several integrative mechanisms at both central and peripheral levels that are rhythmically presented, thus influencing different processes such as food intake. In this way, food intake is controlled by the circadian system, as demonstrated by the persistence of such rhythms of food intake in the absence of environmental external cues. Our study aimed to evaluate the daily profile of hypothalamic mRNA abundance of circadian clock genes (clock1a, bmal1, per1 and rev-erbß-like), and food intake regulators (crf, pomc-a1, cart, and npy) in rainbow trout (Oncorhynchus mykiss), the impact of stress on such rhythms, and the involvement of cortisol and sirtuin1 as mediators. Four cohorts of trout were subjected to 1) normal stocking density (control group), 2) high stocking density for 72 hours (stress group), 3) normal stocking density and implanted with mifepristone, a glucocorticoid receptors antagonist, and 4) mifepristone administered and stressed for 72 hours. Fish from each group were sampled every 4-h along the 24-h LD cycle, and cortisol, glucose and lactate plasma levels were evaluated. Hypothalamic mRNA abundance of clock genes, food intake regulators, glucocorticoid receptors and sirtuin1 were qPCR assayed. Our results reveal the impact of stress on most of the genes assayed, but different mechanisms appear to be involved. The rhythm of clock genes displayed decreased amplitude and averaged levels in stressed trout, with no changes of the acrophase being observed. This effect was not prevented by mifepristone. On the contrary, the effect of stress on the daily profile of crf, pomc-a1, and npy was totally prevented by mifepristone administration. Accordingly, cortisol appears to mainly mediate the effect of stress on food intake regulators through binding to specific glucocorticoid receptors within trout hypothalamus, whereas sirtuin1 is apparently mediating such effects on the circadian system in the same brain region. Further research must be performed to clarify those mechanisms through which stress influences food intake and the circadian oscillator within the same brain region, hypothalamus, in rainbow trout, and the interaction among them all.


Assuntos
Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Ritmo Circadiano , Ingestão de Alimentos , Proteínas de Peixes/metabolismo , Hidrocortisona/metabolismo , Hipotálamo/metabolismo , Oncorhynchus mykiss/metabolismo , Sirtuína 1/metabolismo , Estresse Psicológico/metabolismo , Animais , Comportamento Animal , Ritmo Circadiano/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Ingestão de Alimentos/genética , Proteínas de Peixes/genética , Regulação da Expressão Gênica , Hipotálamo/fisiopatologia , Oncorhynchus mykiss/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais , Estresse Psicológico/genética , Estresse Psicológico/fisiopatologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA