Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Asian-Australas J Anim Sci ; 34(1): 134-142, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31011008

RESUMO

Objective: To understand the athletic characteristics of Thoroughbreds, high-throughput analysis has been conducted using horse muscle tissue. However, an in vitro system has been lacking for studying and validating genes from in silico data. The aim of this study is to validate genes from differentially expressed genes (DEGs) of our previous RNA-sequencing data in vitro. Also, we investigated the effects of exercise-induced stress including heat, oxidative, hypoxic and cortisol stress on horse skeletal muscle derived cells with the top six upregulated genes of DEGs. Methods: Enriched pathway analysis was conducted using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) tool with upregulated genes in horse skeletal muscle tissue after exercise. Among the candidates, the top six genes were analysed through geneMANIA to investigate gene networks. Muscle cells derived from neonatal horse skeletal tissue were maintained and subjected to exercise-related stressors. Transcriptional changes in the top six genes followed by stressors were investigated using qRT-PCR. Results: The inflammation response pathway was the most commonly upregulated pathway after horse exercise. Under non-cytotoxic conditions of exercise-related stressors, the transcriptional response of the top six genes was different among types of stress. Oxidative stress yielded the most similar expression pattern to DEGs. Conclusion: Our results indicate that transcriptional change after horse exercise in skeletal muscle tissue strongly relates to stress response. qRT-PCR results showed that stressors contribute differently to the transcriptional regulation. These results would be valuable information to understand horse exercise in the stress aspect.

2.
Asian-Australas J Anim Sci ; 33(3): 424-435, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31480163

RESUMO

OBJECTIVE: The study was conducted to investigate variations in the immunophysiological responses to exercise-induced stress in Jeju and Thoroughbred horses. METHODS: Blood samples were collected from the jugular veins of adult Jeju (n = 5) and Thoroughbred (n = 5) horses before and after 30 min of exercise. The hematological, biochemical, and immunological profiles of the blood samples were analyzed. Blood smears were stained and observed under a microscope. The concentration of cell-free (cf) DNA in the plasma was determined using real time polymerase chain reaction (PCR). Peripheral blood mononuclear cells (PBMCs) and polymorphonuclear cells were separated using Polymorphprep, and the expression of various stress-related and chemokine receptor genes was measured using reverse transcriptase (RT) and real-time PCR. RESULTS: After exercise, Jeju and Thoroughbred horses displayed stress responses with significantly increased rectal temperatures, cortisol levels, and muscle catabolism-associated metabolites. Red blood cell indices were significantly higher in Thoroughbred horses than in Jeju horses after exercise. In addition, exercise-induced stress triggered the formation of neutrophil extracellular traps (NETs) and reduced platelet counts in Jeju horses but not in Thoroughbred horses. Heat shock protein 72 and heat shock protein family A (Hsp70) member 6 expression is rapidly modulated in response to exercise-induced stress in the PBMCs of Jeju horses. The expression of CXC chemokine receptor 4 in PBMCs was higher in Thoroughbred horses than in Jeju horses after exercise. CONCLUSION: In summary, the different immunophysiological responses of Jeju and Thoroughbred horses explain the differences in the physiological and anatomical properties of the two breeds. The physiology of Thoroughbred horses makes them suitable for racing as they are less sensitive to exercise-induced stress compared to that of Jeju horses. This study provides a basis for investigating the link between exercise-induced stresses and the physiological alteration of horses. Hence, our findings show that some of assessed parameters could be used to determine the endurance performance of horses.

3.
Asian-Australas J Anim Sci ; 32(3): 350-356, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30208686

RESUMO

OBJECTIVE: To examine the regulatory effects of exercise on myokine expression in horse skeletal muscle cells, we compared the expression of several myokine genes (interleukin 6 [IL-6], IL-8, chemokine [C-X-C motif] ligand 2 [CXCL2], and chemokine [C-C motif] ligand 4 [CCL4]) after a single bout of exercise in horses. Furthermore, to establish in vitro systems for the validation of exercise effects, we cultured horse skeletal muscle cells and confirmed the expression of these genes after treatment with hydrogen peroxide. METHODS: The mRNA expression of IL-6, IL-8, CXCL2, and CCL4 after exercise in skeletal muscle tissue was confirmed using quantitative-reverse transcriptase polymerase chain reactions (qRT-PCR). We then extracted horse muscle cells from the skeletal muscle tissue of a neonatal Thoroughbred. Myokine expression after hydrogen peroxide treatments was confirmed using qRT-PCR in horse skeletal muscle cells. RESULTS: IL-6, IL-8, CXCL2, and CCL4 expression in Thoroughbred and Jeju horse skeletal muscles significantly increased after exercise. We stably maintained horse skeletal muscle cells in culture and confirmed the expression of the myogenic marker, myoblast determination protein (MyoD). Moreover, myokine expression was validated using hydrogen peroxide (H2O2)-treated horse skeletal muscle cells. The patterns of myokine expression in muscle cells were found to be similar to those observed in skeletal muscle tissue. CONCLUSION: We confirmed that several myokines involved in inflammation were induced by exercise in horse skeletal muscle tissue. In addition, we successfully cultured horse skeletal muscle cells and established an in vitro system to validate associated gene expression and function. This study will provide a valuable system for studying the function of exercise-related genes in the future.

4.
Asian-Australas J Anim Sci ; 32(8): 1095-1103, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30744354

RESUMO

OBJECTIVE: Among stress responses, the unfolded protein response (UPR) is a well-known mechanism related to endoplasmic reticulum (ER) stress. ER stress is induced by a variety of external and environmental factors such as starvation, ischemia, hypoxia, oxidative stress, and heat stress. Inositol requiring enzyme 1α (IRE1α)-X-box protein 1 (XBP1) is the most conserved pathway involved in the UPR and is the main component that mediates IRE1α signalling to downstream ER-associated degradation (ERAD)- or UPR-related genes. XBP1 is a transcription factor synthesised via a novel mechanism called 'frame switch splicing', and this process has not yet been studied in the horse XBP1 gene. Therefore, the aim of this study was to confirm the frame switch splicing of horse XBP1 and characterise its dynamics using Thoroughbred muscle cells exposed to heat stress. METHODS: Primary horse muscle cells were used to investigate heat stress-induced frame switch splicing of horse XBP1. Frame switch splicing was confirmed by sequencing analysis. XBP1 amino acid sequences and promoter sequences of various species were aligned to confirm the sequence homology and to find conserved cis-acting elements, respectively. The expression of the potential XBP1 downstream genes were analysed by quantitative real-time polymerase chain reaction. RESULTS: We confirmed that splicing of horse XBP1 mRNA was affected by the duration of thermal stress. Twenty-six nucleotides in the mRNA of XBP1 were deleted after heat stress. The protein sequence and the cis-regulatory elements on the promoter of horse XBP1 are highly conserved among the mammals. Induction of putative downstream genes of horse XBP1 was dependent on the duration of heat stress. We confirmed that both the mechanisms of XBP1 frame switch splicing and various binding elements found in downstream gene promoters are highly evolutionarily conserved. CONCLUSION: The frame switch splicing of horse XBP1 and its dynamics were highly conserved among species. These results facilitate studies of ER-stress in horse.

5.
Asian-Australas J Anim Sci ; 31(4): 607-615, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28920412

RESUMO

OBJECTIVE: This study was conducted to isolate the cellulolytic microorganism from the rumen of Holstein steers and characterize endoglucanase gene (Cel5A) from the isolated microorganism. METHODS: To isolate anaerobic microbes having endoglucanase, rumen fluid was obtained from Holstein steers fed roughage diet. The isolated anaerobic bacteria had 98% similarity with Eubacterium cellulosolvens (E. cellulosolvens) Ce2 (Accession number: AB163733). The Cel5A from isolated E. cellulolsovens sp. was cloned using the published genome sequence and expressed through the Escherichia coli BL21. RESULTS: The maximum activity of recombinant Cel5A (rCel5A) was observed at 50°C and pH 4.0. The enzyme was constant at the temperature range of 20°C to 40°C but also, at the pH range of 3 to 9. The metal ions including Ca2+, K+, Ni2+, Mg2+, and Fe2+ increased the endoglucanase activity but the addition of Mn2+, Cu2+, and Zn2+ decreased. The Km and Vmax value of rCel5A were 14.05 mg/mL and 45.66 µmol/min/mg. Turnover number, Kcat and catalytic efficiency, Kcat/Km values of rCel5A was 96.69 (s-1) and 6.88 (mL/mg/s), respectively. CONCLUSION: Our results indicated that rCel5A of E. cellulosolvens isolated from Holstein steers had a broad pH range with high stability under various conditions, which might be one of the beneficial characteristics of this enzyme for possible industrial application.

6.
Asian-Australas J Anim Sci ; 31(3): 309-315, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28920408

RESUMO

OBJECTIVE: This study aimed to test the expression patterns of ERBB receptor feedback inhibitor 1 (ERRFI1) before and after exercise and the association of non-synonymous single-nucleotide polymorphisms (nsSNPs) of horse ERRFI1 with racing traits in Thoroughbreds. METHODS: We performed bioinformatics and gene expression analyses for horse ERRFI1. Transcription factor (TF) binding sites in the 5'-regulatory region of this gene were identified through a tool for prediction of TF-binding site (PROMO). A general linear model was used to detect the association between the nsSNP (LOC42830758 A to G) and race performance. RESULTS: Quantitative polymerase chain reaction analysis showed that expression level of ERRFI1 after exercise was 1.6 times higher than that before exercise. Ten transcription factors were predicted from the ERRFI1 regulatory region. A novel nsSNP (LOC42830758 A to G) was found in ERRFI1, which was associated with three racing traits including average prize money, average racing index, and 3-year-old starts percentile ranking. CONCLUSION: Our analysis will be helpful as a basis for studying genes and SNPs that affect race performance in racehorses.

7.
Asian-Australas J Anim Sci ; 30(11): 1633-1642, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28728374

RESUMO

OBJECTIVE: Evaluation of exercise effects in racehorses is important in horseracing industry and animal health care. In this study, we compared metabolic patterns between before and after exercise to screen metabolic biomarkers for exercise effects in thoroughbreds. METHODS: The concentration of metabolites in muscle, plasma, and urine was measured by 1H nuclear magnetic resonance (NMR) spectroscopy analysis and the relative metabolite levels in the three samples were compared between before and after exercise. Subsequently, multivariate data analysis based on the metabolic profiles was performed using orthogonal partial least square discriminant analysis (OPLS-DA) and variable important plots and t-test was used for basic statistical analysis. RESULTS: From 1H NMR spectroscopy analysis, 35, 25, and 34 metabolites were detected in the muscle, plasma, and urine. Aspartate, betaine, choline, cysteine, ethanol, and threonine were increased over 2-fold in the muscle; propionate and trimethylamine were increased over 2-fold in the plasma; and alanine, glycerol, inosine, lactate, and pyruvate were increased over 2-fold whereas acetoacetate, arginine, citrulline, creatine, glutamine, glutarate, hippurate, lysine, methionine, phenylacetylglycine, taurine, trigonelline, trimethylamine, and trimethylamine N-oxide were decreased below 0.5-fold in the urine. The OPLS-DA showed clear separation of the metabolic patterns before and after exercise in the muscle, plasma, and urine. Statistical analysis showed that after exercise, acetoacetate, arginine, glutamine, hippurate, phenylacetylglycine trimethylamine, trimethylamine N-oxide, and trigonelline were significantly decreased and alanine, glycerol, inosine, lactate, and pyruvate were significantly increased in the urine (p<0.05). CONCLUSION: In conclusion, we analyzed integrated metabolic patterns in the muscle, plasma, and urine before and after exercise in racehorses. We found changed patterns of metabolites in the muscle, plasma, and urine of racehorses before and after exercise.

8.
Asian-Australas J Anim Sci ; 30(5): 728-735, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28111441

RESUMO

OBJECTIVE: This study was performed to reveal the molecular structure and expression patterns of horse glutamate-cysteine ligase catalytic subunit (GCLC) and glutamate-cysteine ligase modifier subunit (GCLM) genes whose products form glutamate cysteine ligase, which were identified as differentially expressed genes in the previous study. METHODS: We performed bioinformatics analyses, and gene expression assay with quantitative polymerase chain reaction (qPCR) for horse GCLC and GCLM genes in muscle and blood leukocytes of Thoroughbred horses. RESULTS: Expression of GCLC showed the same pattern in both blood and muscle tissues after exercise. Expression of GCLC increased in the muscle and blood of Thoroughbreds, suggesting a tissue-specific regulatory mechanism for the expression of GCLC. In addition, expression of the GCLM gene increased after exercise in both the blood and muscle of Thoroughbreds. CONCLUSION: We established the expression patterns of GCLC and GCLM in the skeletal muscle and blood of Thoroughbred horses in response to exercise. Further study is now warranted to uncover the functional importance of these genes in exercise and recovery in racehorses.

9.
Asian-Australas J Anim Sci ; 30(10): 1471-1477, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28854781

RESUMO

OBJECTIVE: Since athletic performance is a most importance trait in horses, most research focused on physiological and physical studies of horse athletic abilities. In contrast, the molecular analysis as well as the regulatory pathway studies remain insufficient for evaluation and prediction of horse athletic abilities. In our previous study, we identified AXL receptor tyrosine kinase (AXL) gene which was expressed as alternative spliced isoforms in skeletal muscle during exercise. In the present study, we validated two AXL alternative splicing transcripts (named as AXLa for long form and AXLb for short form) in equine skeletal muscle to gain insight(s) into the role of each alternative transcript during exercise. METHODS: We validated two isoforms of AXL transcripts in horse tissues by reverse transcriptase polymerase chain reaction (RT-PCR), and then cloned the transcripts to confirm the alternative locus and its sequences. Additionally, we examined the expression patterns of AXLa and AXLb transcripts in horse tissues by quantitative RT-PCR (qRT-PCR). RESULTS: Both of AXLa and AXLb transcripts were expressed in horse skeletal muscle and the expression levels were significantly increased after exercise. The sequencing analysis showed that there was an alternative splicing event at exon 11 between AXLa and AXLb transcripts. 3-dimentional (3D) prediction of the alternative protein structures revealed that the structural distance of the connective region between fibronectin type 3 (FN3) and immunoglobin (Ig) domain was different between two alternative isoforms. CONCLUSION: It is assumed that the expression patterns of AXLa and AXLb transcripts would be involved in regulation of exercise-induced stress in horse muscle possibly through an NF-κB signaling pathway. Further study is necessary to uncover biological function(s) and significance of the alternative splicing isoforms in race horse skeletal muscle.

10.
Asian-Australas J Anim Sci ; 30(4): 585-592, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27764913

RESUMO

OBJECTIVE: The present study investigates pre- and post-implantation developmental competence of nuclear-transferred porcine embryos derived from male and female fetal fibroblasts. METHODS: Male and female fetal fibroblasts were transferred to in vitro-matured enucleated oocytes and in vitro and in vivo developmental competence of reconstructed embryos was investigated. And, a total of 6,789 female fibroblast nuclear-transferred embryos were surgically transferred into 41 surrogate gilts and 4,746 male fibroblast nuclear-transferred embryos were surgically transferred into 25 surrogate gilts. RESULTS: The competence to develop into blastocysts was not significantly different between the sexes. The mean cell number of female and male cloned blastocysts obtained by in vivo culture (143.8±10.5 to 159.2±14.8) was higher than that of in vitro culture of somatic cell nuclear transfer (SCNT) groups (31.4±8.3 to 33.4±11.1). After embryo transfer, 5 pregnant gilts from each treatment delivered 15 female and 22 male piglets. The average birth weight of the cloned piglets, gestation length, and the postnatal survival rates were not significantly different (p<0.05) between sexes. CONCLUSION: The present study found that the sex difference of the nuclear donor does not affect the developmental rate of porcine SCNT embryos. Furthermore, postnatal survivability of the cloned piglets was not affected by the sex of the donor cell.

11.
BMC Cancer ; 15: 474, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-26084564

RESUMO

BACKGROUND: Combination therapy, which reduces the dosage intensity of the individual drugs while increasing their efficacy, is not a novel approach for the treatment of cancer. Methylsulfonylmethane (MSM) is an organic sulfur compound shown to act against tumor cells. Tamoxifen is a commercially available therapeutic agent for breast malignancies. METHODS: In the current study, we analyzed the combinatorial effect of MSM and tamoxifen on the suppression of ER-positive breast cancer xenograft growth and metastasis. Additionally, we also validated the molecular targets by which the drug combination regulated tumor growth and metastasis. RESULTS: We observed that the combination of MSM and tamoxifen regulated cell viability and migration in vitro. The intragastric administration of MSM and subcutaneous implantation of tamoxifen tablets led to tumor growth suppression and inhibition of the Janus kinase 2 (Jak2)/signal transducer and activator of transcription 5b (STAT5b) pathway. Our study also assessed the regulation of signaling molecules implicated in the growth, progression, differentiation, and migration of cancer cells, such as Jak2, STAT5b, insulin-like growth factor-1Rß, and their phosphorylation status. CONCLUSIONS: Study results indicated that this combination therapy inhibited tumor growth and metastasis. Therefore, this drug combination may have a synergistic and powerful anticancer effect against breast cancer.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Dimetil Sulfóxido/administração & dosagem , Janus Quinase 2/genética , Fator de Transcrição STAT5/genética , Sulfonas/administração & dosagem , Tamoxifeno/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Receptor alfa de Estrogênio/genética , Feminino , Humanos , Janus Quinase 2/antagonistas & inibidores , Metástase Neoplásica , Receptores de Somatomedina/antagonistas & inibidores , Receptores de Somatomedina/genética , Fator de Transcrição STAT5/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Asian-Australas J Anim Sci ; 28(5): 686-90, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25924960

RESUMO

The adrenergic receptor beta 2 (ADRB2) plays a role in various physiological responses of the muscle to exercise, such as contraction and relaxation. Given its important role in muscle function, we investigated the structure of the horse ADRB2 gene and its expression pattern after exercise to determine if it can serve as a putative biomarker for recovery. Evolutionary analyses using synonymous and non-synonymous mutation ratios, were compared with other species (human, chimpanzee, mouse, rat, cow, pig, chicken, dog, and cat), and revealed the occurrence of positive selection in the horse ADRB2 gene. In addition, expression analyses by quantitative polymerase chain reaction exhibited ubiquitous distribution of horse ADRB2 in various tissues including lung, skeletal muscle, kidney, thyroid, appendix, colon, spinal cord and heart, with the highest expression observed in the lung. The expression of ADRB2 in skeletal muscle was significantly up-regulated about four folds 30 minutes post-exercise compared to pre-exercise. The expression level of ADRB2 in leukocytes, which could be collected with convenience compared with other tissues in horse, increased until 60 min after exercise but decreased afterward until 120 min, suggesting the ADRB2 expression levels in leukocytes could be a useful biomarker to check the early recovery status of horse after exercise. In conclusion, we identified horse ADRB2 gene and analyzed expression profiles in various tissues. Additionally, analysis of ADBR2 gene expression in leukocytes could be a useful biomarker useful for evaluation of early recovery status after exercise in racing horses.

13.
Asian-Australas J Anim Sci ; 28(5): 697-702, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25924962

RESUMO

While athletic abilities such as speed, endurance and recovery are important in the horse, genes related to these abilities have not been extensively investigated. Here, we characterized the horse peroxisome proliferator-activated receptor delta (PPARδ) gene and analyzed the expression of PPARδ during exercise. PPARδ is a known regulator of ß-oxidation, muscle fiber transformation, and running endurance. Through evolutionary analysis using the synonymous and non-synonymous mutation ratio, it was revealed that positive selection occurred in the horse PPARδ gene. Two important domains related to nuclear hormone receptors, C4 zinc finger and ligand binding domain, were also found to be conserved well in horse PPARδ. Horse PPARδ was expressed ubiquitously in many tissues, but the expression level was various depending on the tissues. In the skeletal muscle, PPARδ increased about 2.5 folds after 30 min of exercise. Unlike in muscle, the increase of PPARδ expression was observed at 60 min but not 30 min of exercise in leukocytes. This finding might be useful for testing the endurance of horse using blood samples. Conclusively, the horse PPARδ gene is evolutionarily conserved well and can be used as a biomarker of endurance in horse.

14.
Asian-Australas J Anim Sci ; 28(12): 1680-5, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26580434

RESUMO

Since ancient days, domestic horses have been closely associated with human civilization. Today, horse racing is an important industry. Various genes involved in energy production and muscle contraction are differentially regulated during a race. Among them, creatine kinase (CK) is well known for its regulation of energy preservation in animal cells. CK is an iso-enzyme, encoded by different genes and expressed in skeletal muscle, heart, brain and leucocytes. We confirmed that the expression of CK-M significantly increased in the blood after a 30 minute exercise period, while no considerable change was observed in skeletal muscle. Analysis of various tissues showed an ubiquitous expression of the CK-M gene in the horse; CK-M mRNA expression was predominant in the skeletal muscle and the cardiac muscle compared to other tissues. An evolutionary study by synonymous and non-synonymous single nucleotide polymorphism ratio of CK-M gene revealed a positive selection that was conserved in the horse. More studies are warranted in order to develop the expression of CK-M gene as a biomarker in blood of thoroughbred horses.

15.
Asian-Australas J Anim Sci ; 28(6): 870-5, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25925064

RESUMO

The purpose of this study was to investigate the alternative splicing in equine cordon-bleu WH2 repeat protein-like 1 (COBLL1) gene that was identified in horse muscle and blood leukocytes, and to predict functional consequences of alternative splicing by bioinformatics analysis. In a previous study, RNA-seq analysis predicted the presence of alternative spliced isoforms of equine COBLL1, namely COBLL1a as a long form and COBLL1b as a short form. In this study, we validated two isoforms of COBLL1 transcripts in horse tissues by the real-time polymerase chain reaction, and cloned them for Sanger sequencing. The sequencing results showed that the alternative splicing occurs at exon 9. Prediction of protein structure of these isoforms revealed three putative phosphorylation sites at the amino acid sequences encoded in exon 9, which is deleted in COBLL1b. In expression analysis, it was found that COBLL1b was expressed ubiquitously and equivalently in all the analyzed tissues, whereas COBLL1a showed strong expression in kidney, spinal cord and lung, moderate expression in heart and skeletal muscle, and low expression in thyroid and colon. In muscle, both COBLL1a and COBLL1b expression decreased after exercise. It is assumed that the regulation of COBLL1 expression may be important for regulating glucose level or switching of energy source, possibly through an insulin signaling pathway, in muscle after exercise. Further study is warranted to reveal the functional importance of COBLL1 on athletic performance in race horses.

16.
BMC Genomics ; 15: 598, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25027854

RESUMO

BACKGROUND: DNA methylation is an epigenetic regulatory mechanism that plays an essential role in mediating biological processes and determining phenotypic plasticity in organisms. Although the horse reference genome and whole transcriptome data are publically available the global DNA methylation data are yet to be known. RESULTS: We report the first genome-wide DNA methylation characteristics data from skeletal muscle, heart, lung, and cerebrum tissues of thoroughbred (TH) and Jeju (JH) horses, an indigenous Korea breed, respectively by methyl-DNA immunoprecipitation sequencing. The analysis of the DNA methylation patterns indicated that the average methylation density was the lowest in the promoter region, while the density in the coding DNA sequence region was the highest. Among repeat elements, a relatively high density of methylation was observed in long interspersed nuclear elements compared to short interspersed nuclear elements or long terminal repeat elements. We also successfully identified differential methylated regions through a comparative analysis of corresponding tissues from TH and JH, indicating that the gene body regions showed a high methylation density. CONCLUSIONS: We provide report the first DNA methylation landscape and differentially methylated genomic regions (DMRs) of thoroughbred and Jeju horses, providing comprehensive DMRs maps of the DNA methylome. These data are invaluable resource to better understanding of epigenetics in the horse providing information for the further biological function analyses.


Assuntos
Metilação de DNA , Genoma , Cavalos/genética , Animais , Cérebro/metabolismo , Biologia Computacional , Ilhas de CpG , DNA/genética , DNA/metabolismo , Pulmão/metabolismo , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Análise de Sequência de DNA
17.
Asian-Australas J Anim Sci ; 27(5): 743-8, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-25050010

RESUMO

The objective of this study was to determine the molecular characteristics of the horse vascular endothelial growth factor alpha gene (VEGFα) by constructing a phylogenetic tree, and to investigate gene expression profiles in tissues and blood leukocytes after exercise for development of suitable biomarkers. Using published amino acid sequences of other vertebrate species (human, chimpanzee, mouse, rat, cow, pig, chicken and dog), we constructed a phylogenetic tree which showed that equine VEGFα belonged to the same clade of the pig VEGFα. Analysis for synonymous (Ks) and non-synonymous substitution ratios (Ka) revealed that the horse VEGFα underwent positive selection. RNA was extracted from blood samples before and after exercise and different tissue samples of three horses. Expression analyses using reverse transcription-polymerase chain reaction (RT-PCR) and quantitative-polymerase chain reaction (qPCR) showed ubiquitous expression of VEGFα mRNA in skeletal muscle, kidney, thyroid, lung, appendix, colon, spinal cord, and heart tissues. Analysis of differential expression of VEGFα gene in blood leukocytes after exercise indicated a unimodal pattern. These results will be useful in developing biomarkers that can predict the recovery capacity of racing horses.

18.
Asian-Australas J Anim Sci ; 27(9): 1236-43, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25178365

RESUMO

Genetics is important for breeding and selection of horses but there is a lack of well-established horse-related browsers or databases. In order to better understand horses, more variants and other integrated information are needed. Thus, we construct a horse genomic variants database including expression and other information. Horse Single Nucleotide Polymorphism and Expression Database (HSDB) (http://snugenome2.snu.ac.kr/HSDB) provides the number of unexplored genomic variants still remaining to be identified in the horse genome including rare variants by using population genome sequences of eighteen horses and RNA-seq of four horses. The identified single nucleotide polymorphisms (SNPs) were confirmed by comparing them with SNP chip data and variants of RNA-seq, which showed a concordance level of 99.02% and 96.6%, respectively. Moreover, the database provides the genomic variants with their corresponding transcriptional profiles from the same individuals to help understand the functional aspects of these variants. The database will contribute to genetic improvement and breeding strategies of Thoroughbreds.

19.
Asian-Australas J Anim Sci ; 27(9): 1345-54, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25178379

RESUMO

Copy number variations (CNVs), important genetic factors for study of human diseases, may have as large of an effect on phenotype as do single nucleotide polymorphisms. Indeed, it is widely accepted that CNVs are associated with differential disease susceptibility. However, the relationships between CNVs and gene expression have not been characterized in the horse. In this study, we investigated the effects of copy number deletion in the blood and muscle transcriptomes of Thoroughbred racing horses. We identified a total of 1,246 CNVs of deletion polymorphisms using DNA re-sequencing data from 18 Thoroughbred racing horses. To discover the tendencies between CNV status and gene expression levels, we extracted CNVs of four Thoroughbred racing horses of which RNA sequencing was available. We found that 252 pairs of CNVs and genes were associated in the four horse samples. We did not observe a clear and consistent relationship between the deletion status of CNVs and gene expression levels before and after exercise in blood and muscle. However, we found some pairs of CNVs and associated genes that indicated relationships with gene expression levels: a positive relationship with genes responsible for membrane structure or cytoskeleton and a negative relationship with genes involved in disease. This study will lead to conceptual advances in understanding the relationship between CNVs and global gene expression in the horse.

20.
BMC Genomics ; 13: 473, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22971240

RESUMO

BACKGROUND: Thoroughbred horses are the most expensive domestic animals, and their running ability and knowledge about their muscle-related diseases are important in animal genetics. While the horse reference genome is available, there has been no large-scale functional annotation of the genome using expressed genes derived from transcriptomes. RESULTS: We present a large-scale analysis of whole transcriptome data. We sequenced the whole mRNA from the blood and muscle tissues of six thoroughbred horses before and after exercise. By comparing current genome annotations, we identified 32,361 unigene clusters spanning 51.83 Mb that contained 11,933 (36.87%) annotated genes. More than 60% (20,428) of the unigene clusters did not match any current equine gene model. We also identified 189,973 single nucleotide variations (SNVs) from the sequences aligned against the horse reference genome. Most SNVs (171,558 SNVs; 90.31%) were novel when compared with over 1.1 million equine SNPs from two SNP databases. Using differential expression analysis, we further identified a number of exercise-regulated genes: 62 up-regulated and 80 down-regulated genes in the blood, and 878 up-regulated and 285 down-regulated genes in the muscle. Six of 28 previously-known exercise-related genes were over-expressed in the muscle after exercise. Among the differentially expressed genes, there were 91 transcription factor-encoding genes, which included 56 functionally unknown transcription factor candidates that are probably associated with an early regulatory exercise mechanism. In addition, we found interesting RNA expression patterns where different alternative splicing forms of the same gene showed reversed expressions before and after exercising. CONCLUSION: The first sequencing-based horse transcriptome data, extensive analyses results, deferentially expressed genes before and after exercise, and candidate genes that are related to the exercise are provided in this study.


Assuntos
Perfilação da Expressão Gênica/métodos , Cavalos/genética , Cavalos/fisiologia , Condicionamento Físico Animal/fisiologia , RNA/genética , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA