Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 447(4): 644-8, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24759232

RESUMO

Regulation of balance between lipid accumulation and energy consumption is a critical step for the maintenance of energy homeostasis. Here, we show that Panax red ginseng extract treatments increased energy expenditures and prevented mice from diet induced obesity. Panax red ginseng extracts strongly activated Hormone Specific Lipase (HSL) via Protein Kinase A (PKA). Since activation of HSL induces lipolysis in WAT and fatty acid oxidation in brown adipose tissue (BAT), these results suggest that Panax red ginseng extracts reduce HFD induced obesity by regulating lipid mobilization.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Metabolismo Energético/efeitos dos fármacos , Mobilização Lipídica/efeitos dos fármacos , Panax , Proteínas Quinases Ativadas por AMP/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dieta Hiperlipídica , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Obesidade/prevenção & controle , Extratos Vegetais/farmacologia
2.
PLoS One ; 15(7): e0235356, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32628693

RESUMO

As a new class of cancer therapeutic agents, oncolytic viruses (OVs) have gained much attention not only due to their ability to selectively replicate in and lyse tumor cells, but also for their potential to stimulate antitumor immune responses. As a result, there is an increasing need for in vitro modeling systems capable of recapitulating the 3D physiological tumor microenvironment. Here, we investigated the potential of our recently developed microphysiological system (MPS), featuring a vessel-like channel to reflect the in vivo tumor microenvironment and serving as culture spaces for 3D multicellular tumor spheroids (MCTSs). The MCTSs consist of cancer A549 cells, stromal MRC5 cells, endothelial HUVECs, as well as the extracellular matrix. 3D MCTSs residing in the MPS were infected with oncolytic VSV expressing GFP (oVSV-GFP). Post-infection, GFP signal intensity increased only in A549 cells of the MPS. On the other hand, HUVECs were susceptible to virus infection under 2D culture and IFN-ß secretion was quite delayed in HUVECs. These results thus demonstrate that OV antitumoral characteristics can be readily monitored in the MPS and that its behavior therein somewhat differs compared to its activity in 2D system. In conclusion, we present the first application of the MPS, an in vitro model that was developed to better reflect in vivo conditions. Its various advantages suggest the 3D MCTS-integrated MPS can serve as a first line monitoring system to validate oncolytic virus efficacy.


Assuntos
Neoplasias/terapia , Terapia Viral Oncolítica , Vírus Oncolíticos/imunologia , Vesiculovirus/imunologia , Células A549 , Técnicas de Cultura de Células/métodos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Matriz Extracelular , Células Endoteliais da Veia Umbilical Humana , Humanos , Neoplasias/imunologia , Vírus Oncolíticos/genética , Esferoides Celulares , Vesiculovirus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA