Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36614802

RESUMO

Welding defects are common during the production of large welded structures. However, few studies have explored methods of compensating for clear welding defects without resorting to re-welding. Here, an ultrasonic peening method to compensate for the deteriorated mechanical properties of overlap weld defects without repair welding was studied. We experimentally investigated changes in the mechanical properties of defective welds before and after ultrasonic peening. The weld specimen with an overlap defect contained a large cavity-type defect inside the weld bead, which significantly reduced the fatigue life. When the surface of the defective test piece was peened, the fatigue life of the weld plate was restored, resulting in an equivalent or higher number of cycles to failure, compared to a specimen with a normal weld. The recovery of mechanical properties was attributed to the effect of surface work hardening by ultrasonic peening and the change in stress distribution. Thus, ultrasonic peening could compensate for the deterioration of mechanical properties such as tensile strength, fatigue life, and elongation due to overlap defects, without resorting to repair welding.

2.
Materials (Basel) ; 13(24)2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33333792

RESUMO

In this study, the effect of baking heat treatment on fatigue strength and fatigue life was evaluated by performing baking heat treatment after shot peening treatment on 4340M steel for landing gear. An ultrasonic fatigue test was performed to obtain the S-N curve, and the fatigue strength and fatigue life were compared. The micro hardness of shot peening showed a maximum at a hardened depth of about 50 µm and was almost uniform when it arrived at the hardened depth of about 400 µm. The overall average tensile strength after the baking heat treatment was lowered by about 80-111 MPa, but the yield strength was improved by about 206-262 MPa. The five cases of specimens showed similar fatigue strength and fatigue life in high cycle fatigue (HCF) regime. However, the fatigue limit of the baking heat treated specimens showed an increasing tendency rather than that of shot peening specimens when the fatigue life was extended to the very high cycle fatigue (VHCF) regime. The effect of baking heat treatment was identified from improved fatigue limit when baking heat was used to treat the specimen treated by shot peening containing inclusions. The optimum temperature range for the better baking heat treatment effect could be constrained not to exceed maximum 246 °C.

3.
Materials (Basel) ; 13(24)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33321944

RESUMO

Glass with strong durability and transparency has been in the spotlight in various fields, including displays. Elastic and shear moduli and Poisson's ratio are important properties of glasses. The purpose of this study is to evaluate the change in mechanical properties, such as the dynamic elastic modulus and Poisson's ratio, with respect to the chemical strengthening time of glass for display applications, as measured by static and dynamic methods. The basic measurement principle of the dynamic method is to measure acoustic speed or resonant frequency using an ultrasonic generator. The mechanical properties of both non-strengthened and chemically strengthened glasses were investigated. It was found that the strength of the chemically strengthened glass decreased when chemical strengthening time increased. Chemical strengthening increased the bending strength and decreased the elastic modulus due to the introduction of compressive residual stress at the surface.

4.
Materials (Basel) ; 13(14)2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32708583

RESUMO

The current research reports the improvement in surface integrity and tribological characteristics of steel prepared using a powder metallurgy (PM) by ultrasonic nanocrystal surface modification (UNSM) at 25 and 300 °C. The surface integrity and tribological properties of three samples, namely, as-PM, UNSM-25 and UNSM-300 were investigated. The average surface roughness (Ra) of the as-PM, UNSM-25 and UNSM-300 samples was measured using a non-contact 3D scanner, where it was found to be 3.21, 1.14 and 0.74 µm, respectively. The top surface hardness was also measured in order to investigate the influence of UNSM treatment temperature on the hardness. The results revealed that the as-PM sample with a hardness of 109 HV was increased up to 165 and 237 HV, corresponding to a 32.1% and 57.2% after both the UNSM treatment at 25 and 300 °C, respectively. XRD analysis was also performed to confirm if any changes in chemistry and crystal size were took place after the UNSM treatment at 25 and 300 °C. In addition, dry tribological properties of the samples were investigated. The friction coefficient of the as-PM sample was 0.284, which was reduced up to 0.225 and 0.068 after UNSM treatment at 25 and 300 °C, respectively. The wear resistance was also enhanced by 33.2 and 52.9% after UNSM treatment at both 25 and 300 °C. Improvements in surface roughness, hardness and tribological properties was attributed to the elimination of big and deep porosities after UNSM treatment. Wear track of the samples and wear scar of the counter surface balls were investigated by SEM to reach a comprehensive discussion on wear mechanisms. Overall, it was confirmed that UNSM treatment at 25 and 300 °C had a beneficial effect on the surface integrity and tribological characteristics of sintered steel by the PM that is used in a shock absorber for a car engine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA