Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
BMC Plant Biol ; 24(1): 436, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38773361

RESUMO

BACKGROUND: E2F/DP (Eukaryotic 2 transcription factor/dimerization partner) family proteins play an essential function in the cell cycle development of higher organisms. E2F/DP family genes have been reported only in a few plant species. However, comprehensive genome-wide characterization analysis of the E2F/DP gene family of Solanum lycopersicum has not been reported so far. RESULTS: This study identified eight nonredundant SlE2F/DP genes that were classified into seven groups in the phylogenetic analysis. All eight genes had a single E2F-TDP domain and few genes had additional domains. Two segmental duplication gene pairs were observed within tomato, in addition to cis-regulatory elements, miRNA target sites and phosphorylation sites which play an important role in plant development and stress response in tomato. To explore the three-dimensional (3D) models and gene ontology (GO) annotations of SlE2F/DP proteins, we pointed to their putative transporter activity and their interaction with several putative ligands. The localization of SlE2F/DP-GFP fused proteins in the nucleus and endoplasmic reticulum suggested that they may act in other biological functions. Expression studies revealed the differential expression pattern of most of the SlE2F/DP genes in various organs. Moreover, the expression of E2F/DP genes against abiotic stress, particularly SlE2F/DP2 and/or SlE2F/DP7, was upregulated in response to heat, salt, cold and ABA treatment. Furthermore, the co-expression analysis of SlE2F/DP genes with multiple metabolic pathways was co-expressed with defence genes, transcription factors and so on, suggested their crucial role in various biological processes. CONCLUSIONS: Overall, our findings provide a way to understand the structure and function of SlE2F/DP genes; it might be helpful to improve fruit development and tolerance against abiotic stress through marker-assisted selection or transgenic approaches.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Solanum lycopersicum , Estresse Fisiológico , Solanum lycopersicum/genética , Solanum lycopersicum/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Família Multigênica , Filogenia , Genoma de Planta , Fatores de Transcrição E2F/genética , Fatores de Transcrição E2F/metabolismo
2.
Proteomics ; 23(12): e2300035, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37058097

RESUMO

Rice is a major component of the human diet and feeds more than 50 million people across the globe. We previously developed two pigmented rice cultivars, Super-hongmi (red seeds) and Super-jami (black seeds), that are highly rich in antioxidants and exhibit high levels of radical scavenging activities. However, the molecular mechanism underlying the accumulation of pigments and different antioxidants in these rice cultivars remains largely elusive. Here, we report the proteome profiles of mature Super-hongmi and Super-jami seeds, and compared them with the Hopum (white seeds) using a label-free quantitative proteomics approach. This approach led to the identification of 5127 rice seed proteins of which 1628 showed significant changes in the pigmented rice cultivar(s). The list of significantly modulated proteins included a phytoene desaturase (PDS3) which suggested accumulation of ζ-carotene in red seeds while the black seeds seem to accumulate more of anthocyanins because of the higher abundance of dihydroflavonol 4-reductase. Moreover, proteins associated with lignin and tocopherol biosynthesis were highly increased in both red and black cultivars. Taken together, these data report the seed proteome of three different colored rice seeds and identify novel components associated with pigment accumulation in rice.


Assuntos
Antioxidantes , Oryza , Humanos , Antocianinas/metabolismo , Tocoferóis/metabolismo , Oryza/genética , Oryza/metabolismo , Proteoma/metabolismo , Sementes/metabolismo
3.
Plant J ; 110(6): 1619-1635, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35388561

RESUMO

Increasing the vegetative growth period of crops can increase biomass and grain yield. In rice (Oryza sativa), the concentration of trans -zeatin, an active cytokinin, was high in the leaves during vegetative growth and decreased rapidly upon induction of florigen expression, suggesting that this hormone is involved in the regulation of the vegetative phase. To elucidate whether exogenous cytokinin application influences the length of the vegetative phase, we applied 6-benzylaminopurine (BAP) to rice plants at various developmental stages. Our treatment delayed flowering time by 8-9 days when compared with mock-treated rice plants, but only at the transition stage when the flowering signals were produced. Our observations also showed that flowering in the paddy field is delayed by thidiazuron, a stable chemical that mimics the effects of cytokinin. The transcript levels of florigen genes Heading date 3a (Hd3a) and Rice Flowering locus T1 (RFT1) were significantly reduced by the treatment, but the expression of Early heading date 1 (Ehd1), a gene found directly upstream of the florigen genes, was not altered. In maize (Zea mays), similarly, BAP treatment increased the vegetative phage by inhibiting the expression of ZCN8, an ortholog of Hd3a. We showed that cytokinin treatment induced the expression of two type-A response regulators (OsRR1 and OsRR2) which interacted with Ehd1, a type-B response regulator. We also observed that cytokinin did not affect flowering time in ehd1 knockout mutants. Our study indicates that cytokinin application increases the duration of the vegetative phase by delaying the expression of florigen genes in rice and maize by inhibiting Ehd1.


Assuntos
Oryza , Citocininas/metabolismo , Florígeno/metabolismo , Flores , Regulação da Expressão Gênica de Plantas , Oryza/metabolismo , Fotoperíodo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Zea mays/genética , Zea mays/metabolismo
4.
Plant Physiol ; 190(1): 562-575, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-35736513

RESUMO

Pollen tube (PT) elongation is important for double fertilization in angiosperms and affects the seed-setting rate and, therefore, crop productivity. Compared to Arabidopsis (Arabidopsis thaliana L.), information on PT elongation in rice (Oryza sativa L.) is limited by the difficulty in obtaining homozygous mutants. In a screen of T-DNA insertional mutants, we identified a mutant in the Tethering protein of actomyosin transport in pollen tube elongation (TAPE) gene with an unusual segregation ratio by genotyping analysis. A CRISPR/Cas9 knockout mutant of TAPE that produced a short PT was sterile, and TAPE was expressed specifically in pollen grains. TAPE is a homolog of a myosin XI adaptor in Arabidopsis with three tetratricopeptide repeat and Phox and Bem1 protein domains. TAPE showed latrunculin B-sensitive, actin-dependent localization to the endoplasmic reticulum. Yeast two-hybrid screening and transcriptome analysis revealed that TAPE interacted with pollen-specific LIM protein 2b and elongation factor 1-alpha. Loss of TAPE affected transcription of 1,259 genes, especially genes related to cell organization, which were downregulated. In summary, TAPE encodes a myosin XI adaptor essential for rice PT elongation.


Assuntos
Arabidopsis , Oryza , Arabidopsis/genética , Miosinas/genética , Miosinas/metabolismo , Oryza/genética , Pólen/genética , Pólen/metabolismo , Tubo Polínico/genética , Tubo Polínico/metabolismo
5.
Plant Cell Environ ; 46(4): 1327-1339, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36120845

RESUMO

Floral transition starts in the leaves when florigens respond to various environmental and developmental factors. Among several regulatory genes that are preferentially expressed in the inflorescence meristem during the floral transition, this study examines the homeobox genes OsZHD1 and OsZHD2 for their roles in regulating this transition. Although single mutations in these genes did not result in visible phenotype changes, double mutations in these genes delayed flowering. Florigen expression was not altered in the double mutants, indicating that the delay was due to a defect in florigen signaling. Morphological analysis of shoot apical meristem at the early developmental stage indicated that inflorescence meristem development was significantly delayed in the double mutants. Overexpression of ZHD2 causes early flowering because of downstream signals after the generation of florigens. Expression levels of the auxin biosynthesis genes were reduced in the mutants and the addition of indole-3-acetic acid recovered the defect in the mutants, suggesting that these homeobox genes play a role in auxin biosynthesis. A rice florigen, RICE FLOWERING LOCUS T 1, binds to the promoter regions of homeobox genes. These results indicate that florigens stimulate the expression of homeobox genes, enhancing inflorescence development in the shoot apex.


Assuntos
Inflorescência , Meristema , Meristema/genética , Fatores de Transcrição/metabolismo , Florígeno/metabolismo , Genes Homeobox , Ácidos Indolacéticos/metabolismo , Regulação da Expressão Gênica de Plantas , Flores/genética
6.
Int J Mol Sci ; 23(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36293082

RESUMO

HVA22 family proteins with a conserved TB2/DP1/HVA22 domain are ubiquitous in eukaryotes. HVA22 family genes have been identified in a variety of plant species. However, there has been no comprehensive genome-wide analysis of HVA22 family genes in tomato (Solanum lycopersicum L.). Here, we identified 15 non-redundant SlHVA22 genes with three segmentally duplicated gene pairs on 8 of the 12 tomato chromosomes. The predicted three-dimensional (3D) models and gene ontology (GO) annotations of SlHVA22 proteins pointed to their putative transporter activity and ability to bind to diverse ligands. The co-expression of SlHVA22 genes with various genes implicated in multiple metabolic pathways and the localization of SlHVA22-GFP fused proteins to the endoplasmic reticulum suggested that they might have a variety of biological functions, including vesicular transport in stressed cells. Comprehensive expression analysis revealed that SlHVA22 genes were differentially expressed in various organs and in response to abiotic stress conditions. The predominant expression of SlHVA22i at the ripening stage and that of SlHVA22g, SlHVA22k, and SlHVA22l in fruits at most developmental stages suggested their probable involvement in tomato fruit development and ripening. Moreover, the transcript expression of most tomato HVA22 genes, particularly SlHVA22b, SlHVA22i, SlHVA22k, SlHVA22l, SlHVA22m, and SlHVA22n, was affected by abscisic acid (ABA) and diverse abiotic stress treatments, indicating the likely involvement of these genes in tomato abiotic stress responses in an ABA-dependent manner. Overall, our findings provide a foundation to better understand the structures and functional roles of SlHVA22 genes, many of which might be useful to improve the abiotic stress tolerance and fruit quality of tomato through marker-assisted backcrossing or transgenic approaches.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/metabolismo , Ácido Abscísico/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Genoma de Planta , Família Multigênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica , Filogenia
7.
BMC Plant Biol ; 21(1): 530, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34772358

RESUMO

BACKGROUND: Alba (Acetylation lowers binding affinity) proteins are an ancient family of nucleic acid-binding proteins that function in gene regulation, RNA metabolism, mRNA translatability, developmental processes, and stress adaptation. However, comprehensive bioinformatics analysis on the Alba gene family of Solanum lycopersicum has not been reported previously. RESULTS: In the present study, we undertook the first comprehensive genome-wide characterization of the Alba gene family in tomato (Solanum lycopersicum L.). We identified eight tomato Alba genes, which were classified into two groups: genes containing a single Alba domain and genes with a generic Alba domain and RGG/RG repeat motifs. Cis-regulatory elements and target sites for miRNAs, which function in plant development and stress responses, were prevalent in SlAlba genes. To explore the structure-function relationships of tomato Alba proteins, we predicted their 3D structures, highlighting their likely interactions with several putative ligands. Confocal microscopy revealed that SlAlba-GFP fusion proteins were localized to the nucleus and cytoplasm, consistent with putative roles in various signalling cascades. Expression profiling revealed the differential expression patterns of most SlAlba genes across diverse organs. SlAlba1 and SlAlba2 were predominantly expressed in flowers, whereas SlAlba5 expression peaked in 1 cm-diameter fruits. The SlAlba genes were differentially expressed (up- or downregulated) in response to different abiotic stresses. All but one of these genes were induced by abscisic acid treatment, pointing to their possible regulatory roles in stress tolerance via an abscisic acid-dependent pathway. Furthermore, co-expression of SlAlba genes with multiple genes related to several metabolic pathways spotlighted their crucial roles in various biological processes and signalling. CONCLUSIONS: Our characterization of SlAlba genes should facilitate the discovery of additional genes associated with organ and fruit development as well as abiotic stress adaptation in tomato.


Assuntos
Frutas/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Frutas/genética , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia
8.
Plant Biotechnol J ; 19(11): 2177-2191, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34058048

RESUMO

Cereal grain endosperms are an important source of human nutrition. Nuclear division in early endosperm development plays a major role in determining seed size; however, this development is not well understood. We identified the rice mutant endospermless 2 (enl2), which shows defects in the early stages of endosperm development. These phenotypes arise from mutations in OsCTPS1 that encodes a cytidine triphosphate synthase (CTPS). Both wild-type and mutant endosperms were normal at 8 h after pollination (HAP). In contrast, at 24 HAP, enl2 endosperm had approximately 10-16 clumped nuclei while wild-type nuclei had increased in number and migrated to the endosperm periphery. Staining of microtubules in endosperm at 24 HAP revealed that wild-type nuclei were evenly distributed by microtubules while the enl2-2 nuclei were tightly packed due to their reduction in microtubule association. In addition, OsCTPS1 interacts with tubulins; thus, these observations suggest that OsCTPS1 may be involved in microtubule formation. OsCTPS1 transiently formed macromolecular structures in the endosperm during early developmental stages, further supporting the idea that OsCTPS1 may function as a structural component during endosperm development. Finally, overexpression of OsCTPS1 increased seed weight by promoting endosperm nuclear division, suggesting that this trait could be used to increase grain yield.


Assuntos
Endosperma , Oryza , Carbono-Nitrogênio Ligases , Núcleo Celular , Endosperma/genética , Oryza/genética , Sementes/genética
9.
Plant Physiol ; 179(2): 558-568, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30545904

RESUMO

Root hairs are important for absorption of nutrients and water from the rhizosphere. The Root Hair Defective-Six Like (RSL) Class II family of transcription factors is expressed preferentially in root hairs and has a conserved role in root hair development in land plants. We functionally characterized the seven members of the RSL Class II subfamily in the rice (Oryza sativa) genome. In root hairs, six of these genes were preferentially expressed and four were strongly expressed. Phenotypic analysis of each mutant revealed that Os07g39940 plays a major role in root hair formation, based on observations of a short root hair phenotype in those mutants. Overexpression (OX) for each of four family members in rice resulted in an increase in the density and length of root hairs. These four members contain a transcription activation domain and are targeted to the nucleus. They interact with rice Root Hairless1 (OsRHL1), a key regulator of root hair development. When heterologously expressed in epidermal cells of Nicotiana benthamiana leaves, OsRHL1 was predominantly localized to the cytoplasm. When coexpressed with each of the four RSL Class II members, however, OsRLH1 was translocated to the nucleus. Transcriptome analysis using Os07g39940-OX plants revealed that 86 genes, including Class III peroxidases, were highly up-regulated. Furthermore, reactive oxygen species levels in the root hairs were increased in Os07g39940-OX plants but were drastically reduced in the os07g39940 and rhl1 mutants. Our results demonstrate that RSL Class II members function as essential regulators of root hair development in rice.


Assuntos
Núcleo Celular/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Núcleo Celular/genética , Citoplasma/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Mutação , Oryza/genética , Oryza/crescimento & desenvolvimento , Epiderme Vegetal/genética , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Transporte Proteico , Espécies Reativas de Oxigênio/metabolismo
10.
J Exp Bot ; 71(18): 5348-5364, 2020 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-32449922

RESUMO

Root meristem activity is the most critical process influencing root development. Although several factors that regulate meristem activity have been identified in rice, studies on the enhancement of meristem activity in roots are limited. We identified a T-DNA activation tagging line of a zinc-finger homeobox gene, OsZHD2, which has longer seminal and lateral roots due to increased meristem activity. The phenotypes were confirmed in transgenic plants overexpressing OsZHD2. In addition, the overexpressing plants showed enhanced grain yield under low nutrient and paddy field conditions. OsZHD2 was preferentially expressed in the shoot apical meristem and root tips. Transcriptome analyses and quantitative real-time PCR experiments on roots from the activation tagging line and the wild type showed that genes for ethylene biosynthesis were up-regulated in the activation line. Ethylene levels were higher in the activation lines compared with the wild type. ChIP assay results suggested that OsZHD2 induces ethylene biosynthesis by controlling ACS5 directly. Treatment with ACC (1-aminocyclopropane-1-carboxylic acid), an ethylene precursor, induced the expression of the DR5 reporter at the root tip and stele, whereas treatment with an ethylene biosynthesis inhibitor, AVG (aminoethoxyvinylglycine), decreased that expression in both the wild type and the OsZHD2 overexpression line. These observations suggest that OsZHD2 enhances root meristem activity by influencing ethylene biosynthesis and, in turn, auxin.


Assuntos
Meristema , Oryza , Etilenos , Regulação da Expressão Gênica de Plantas , Genes Homeobox , Ácidos Indolacéticos , Meristema/genética , Oryza/genética , Raízes de Plantas/genética , Fatores de Transcrição/genética
11.
Plant Biotechnol J ; 17(1): 178-187, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29851259

RESUMO

Grain number is an important agronomic trait. We investigated the roles of chromatin interacting factor Oryza sativa VIN3-LIKE 2 (OsVIL2), which controls plant biomass and yield in rice. Mutations in OsVIL2 led to shorter plants and fewer grains whereas its overexpression (OX) enhanced biomass production and grain numbers when compared with the wild type. RNA-sequencing analyses revealed that 1958 genes were up-regulated and 2096 genes were down-regulated in the region of active division within the first internodes of OX plants. Chromatin immunoprecipitation analysis showed that, among the downregulated genes, OsVIL2 was directly associated with chromatins in the promoter region of CYTOKININ OXIDASE/DEHYDROGENASE2 (OsCKX2), a gene responsible for cytokinin degradation. Likewise, active cytokinin levels were increased in the OX plants. We conclude that OsVIL2 improves the production of biomass and grain by suppressing OsCKX2 chromatin.


Assuntos
Grão Comestível/crescimento & desenvolvimento , Proteínas de Homeodomínio/genética , Oryza/genética , Proteínas de Plantas/genética , Biomassa , Imunoprecipitação da Cromatina , Grão Comestível/genética , Grão Comestível/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/fisiologia , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Regiões Promotoras Genéticas/genética , Análise de Sequência de RNA
12.
Plant J ; 90(4): 708-719, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27995671

RESUMO

The timing of flowering is determined by endogenous genetic components as well as various environmental factors, such as day length, temperature, and stress. The genetic elements and molecular mechanisms that rule this process have been examined in the long-day-flowering plant Arabidopsis thaliana and short-day-flowering rice (Oryza sativa). However, reviews of research on the role of those factors are limited. Here, we focused on how flowering time is influenced by nutrients, ambient temperature, drought, salinity, exogenously applied hormones and chemicals, and pathogenic microbes. In response to such stresses or stimuli, plants either begin flowering to produce seeds for the next generation or else delay flowering by slowing their metabolism. These responses vary depending upon the dose of the stimulus, the plant developmental stage, or even the cultivar that is used. Our review provides insight into how crops might be managed to increase productivity under various environmental challenges.


Assuntos
Arabidopsis/metabolismo , Arabidopsis/fisiologia , Flores/metabolismo , Flores/fisiologia , Oryza/metabolismo , Oryza/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Secas , Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
13.
Plant Physiol ; 174(1): 312-325, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28351912

RESUMO

Seed shattering is an agronomically important trait. Two major domestication factors are responsible for this: qSH1 and SH5. Whereas qSH1 functions in cell differentiation in the abscission zone (AZ), a major role of SH5 is the repression of lignin deposition. We have determined that a KNOX protein, OSH15, also controls seed shattering. Knockdown mutations of OSH15 showed reduced seed-shattering phenotypes. Coimmunoprecipitation experiments revealed that OSH15 interacts with SH5 and qSH1, two proteins in the BELL homeobox family. In transgenic plants carrying the OSH15 promoter-GUS reporter construct, the reporter gene was preferentially expressed in the AZ during young spikelet development. The RNA in situ hybridization experiment also showed that OSH15 messenger RNAs were abundant in the AZ during spikelet development. Analyses of osh15 SH5-D double mutants showed that SH5 could not increase the degree of seed shattering when OSH15 was absent, indicating that SH5 functions together with OSH15. In addition to the seed-shattering phenotype, osh15 mutants displayed dwarfism and accumulated a higher amount of lignin in internodes due to increased expression of the genes involved in lignin biosynthesis. Knockout mutations of CAD2, which encodes an enzyme for the last step in the monolignol biosynthesis pathway, caused an easy seed-shattering phenotype by reducing lignin deposition in the AZ This indicated that the lignin level is an important determinant of seed shattering in rice (Oryza sativa). Chromatin immunoprecipitation assays demonstrated that both OSH15 and SH5 interact directly with CAD2 chromatin. We conclude that OSH15 and SH5 form a dimer that enhances seed shattering by directly inhibiting lignin biosynthesis genes.


Assuntos
Grão Comestível/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Lignina/biossíntese , Proteínas de Plantas/genética , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/metabolismo , Hibridização In Situ/métodos , Mutação , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Fenótipo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica , Multimerização Proteica
14.
Plant Physiol ; 170(4): 2159-71, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26864016

RESUMO

In plants, flowering time is elaborately controlled by various environment factors. Ultimately, florigens such as FLOWERING LOCUS T (FT) or FT-like molecules induce flowering. In rice (Oryza sativa), Early heading date 1 (Ehd1) is a major inducer of florigen gene expression. Although Ehd1 is highly homologous to the type-B response regulator (RR) family in the cytokinin signaling pathway, its precise molecular mechanism is not well understood. In this study, we showed that the C-terminal portion of the protein containing the GARP DNA-binding (G) domain can promote flowering when overexpressed. We also observed that the N-terminal portion of Ehd1, carrying the receiver (R) domain, delays flowering by inhibiting endogenous Ehd1 activity. Ehd1 protein forms a homomer via a 16-amino acid region in the inter domain between R and G. From the site-directed mutagenesis analyses, we demonstrated that phosphorylation of the Asp-63 residue within the R domain induces the homomerization of Ehd1, which is crucial for Ehd1 activity. A type-A RR, OsRR1, physically interacts with Ehd1 to form a heterodimer. In addition, OsRR1-overexpressing plants show a late-flowering phenotype. Based on these observations, we conclude that OsRR1 inhibits Ehd1 activity by binding to form an inactive complex.


Assuntos
Flores/fisiologia , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Multimerização Proteica , Ácido Aspártico/metabolismo , Flores/genética , Modelos Biológicos , Proteínas Mutantes/metabolismo , Sinais de Localização Nuclear/metabolismo , Oryza/genética , Fenótipo , Fosforilação , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Ligação Proteica , Domínios Proteicos , Transcrição Gênica , Ativação Transcricional/genética , Técnicas do Sistema de Duplo-Híbrido
15.
Plant Cell Rep ; 35(4): 905-20, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26795142

RESUMO

KEY MESSAGE: OsVIL1 is associated with a PRC2-like complex through its fibronectin type III domain to activate flowering by suppressing OsLF under SD and delay flowering by inducing Ghd7 under LD. Polycomb repressive complex 2 (PRC2) inhibits the expression of target genes by modifying histone proteins. Although several genes that epigenetically regulate flowering time have been identified in Arabidopsis thaliana and rice (Oryza sativa), the molecular mechanism by which PRC2 affects flowering time has not been well understood in rice. We investigated the role of Oryza sativa VERNALIZATION INSENSITIVE 3-LIKE 1 (OsVIL1), which is homologous to the flowering promoter OsVIL2. The reduction in OsVIL1 expression by RNA interference (RNAi) caused a late flowering phenotype under short days (SD). In the RNAi lines, OsLF expression was increased, but transcripts of Early heading date 1 (Ehd1), Heading date 3a (Hd3a), and RICE FLOWERING LOCUS T 1 (RFT1) were reduced. By contrast, OsVIL1-overexpressing (OX) transgenic lines displayed an early flowering phenotype under SD. Levels of OsLF transcript were reduced while those of Ehd1, Hd3a, and RFT1 were enhanced in the OX lines. Under long days (LD), the OsVIL1-OX lines flowered late and Grain number, plant height, and heading date 7 (Ghd7) expression was higher. We also demonstrated that the plant homeodomain region of OsVIL1 binds to native histone H3 in vitro. Our co-immunoprecipitation assays showed that OsVIL1 interacts with OsVIL2 and that the fibronectin type III domain of OsVIL1 is associated with O. sativa EMBRYONIC FLOWER 2b (OsEMF2b). We propose that OsVIL1 forms a PRC2-like complex to induce flowering by suppressing OsLF under SD but delay flowering by elevating Ghd7 expression under LD.


Assuntos
Flores/fisiologia , Oryza/fisiologia , Fotoperíodo , Proteínas de Plantas/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genoma de Planta , Histonas/metabolismo , Mutação/genética , Oryza/genética , Fenótipo , Proteínas de Plantas/química , Plantas Geneticamente Modificadas , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
16.
Plant J ; 79(5): 717-28, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24923192

RESUMO

Seed shattering is an important trait that influences grain yield. A major controlling quantitative trait locus in rice is qSH1. Although the degree of shattering is correlated with the level of expression of qSH1, some qSH1-defective cultivars display moderate shattering while others show a non-shattering phenotype. Os05 g38120 (SH5) on chromosome 5 is highly homologous to qSH1. Although we detected SH5 transcripts in various organs, this gene was highly expressed at the abscission zone (AZ) in the pedicels. When expression of this gene was suppressed in easy-shattering 'Kasalath', development of the AZ was reduced and thereby so was seed loss. By contrast, the extent of shattering, as well as AZ development, was greatly enhanced in moderate-shattering 'Dongjin' rice when SH5 was overexpressed. Likewise, overexpression of SH5 in the non-shattering 'Ilpum' led to an increase in seed shattering because lignin levels were decreased in the basal region of spikelets in the absence of development of an AZ. We also determined that two shattering-related genes, SHAT1 and Sh4, which are necessary for proper formation of an AZ, were induced by SH5. Based on these observations, we propose that SH5 modulates seed shattering by enhancing AZ development and inhibiting lignin biosynthesis.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Lignina/metabolismo , Oryza/genética , Produtos Agrícolas , DNA de Plantas/genética , Expressão Gênica , Genes Reporter , Proteínas de Homeodomínio/metabolismo , Hibridização In Situ , Mutagênese Insercional , Oryza/citologia , Oryza/fisiologia , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas , Interferência de RNA , RNA de Plantas/genética , Plântula/citologia , Plântula/genética , Plântula/fisiologia , Sementes/citologia , Sementes/genética , Sementes/fisiologia
17.
Planta ; 241(3): 603-13, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25399351

RESUMO

MAIN CONCLUSION: A genome-wide survey of Catharanthus roseus receptor-like kinase1-like kinases (CrRLK1Ls) in rice revealed that the pattern of expression by some CrRLK1Ls is controlled by drought or circadian rhythms. This is probably accomplished through the functioning of Gigantea ( OsGI ). Such findings provide a novel angle for using CrRLK1Ls to study the drought-stress response and circadian regulation. The 17 CrRLK1L members of a novel RLK family have been identified in Arabidopsis. Each carries a putative extracellular carbohydrate-binding malectin-like domain. However, their roles in rice, a widely consumed staple food, are not well understood. To investigate the functions of CrRLK1Ls in rice, we utilized phylogenomics data obtained through anatomical and diurnal meta-expression analyses. This information was integrated with a large set of public microarray data within the context of the rice CrRLK1L family phylogenic tree. Chromosomal locations indicated that 3 of 16 genes were tandem-duplicated, suggesting possible functional redundancy within this family. However, integrated diurnal expression showed functional divergence between two of three genes, i.e., peak expression was detected during the day for OsCrRLK1L2, but during the night for OsCrRLK1L3. We found it interesting that OsCrRLK1L2 expression was repressed in osgigantea (osgi) mutants, which suggests that it could function downstream of OsGI. Network analysis associated with OsCrRLK1L2 and OsGI suggested a novel circadian regulation mechanism mediated by OsGI. In addition, two of five OsCrRLK1Ls preferentially expressed in the roots were stimulated by drought, suggesting a potential role for this family in water-use efficiency. This preliminary identification of CrRLK1Ls and study of their expression in rice will facilitate further functional classifications and applications in plant production.


Assuntos
Catharanthus/genética , Oryza/genética , Proteínas Quinases/genética , Arabidopsis/genética , Mapeamento Cromossômico , Ritmo Circadiano , Secas , Perfilação da Expressão Gênica , Genoma de Planta , Oryza/enzimologia , Filogenia , Estresse Fisiológico
18.
Plants (Basel) ; 12(21)2023 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-37960070

RESUMO

Understanding the molecular mechanisms underlying early seed development is important in improving the grain yield and quality of crop plants. We performed a comparative label-free quantitative proteomic analysis of developing rice seeds for the WT and osctps1-2 mutant, encoding a cytidine triphosphate synthase previously reported as the endospermless 2 (enl2) mutant in rice, harvested at 0 and 1 d after pollination (DAP) to understand the molecular mechanism of early seed development. In total, 5231 proteins were identified, of which 902 changed in abundance between 0 and 1 DAP seeds. Proteins that preferentially accumulated at 1 DAP were involved in DNA replication and pyrimidine biosynthetic pathways. Notably, an increased abundance of OsCTPS1 was observed at 1 DAP; however, no such changes were observed at the transcriptional level. We further observed that the inhibition of phosphorylation increased the stability of this protein. Furthermore, in osctps1-2, minichromosome maintenance (MCM) proteins were significantly reduced compared with those in the WT at 1 DAP, and mutations in OsMCM5 caused defects in seed development. These results highlight the molecular mechanisms underlying early seed development in rice at the post-transcriptional level.

19.
Front Plant Sci ; 14: 1117023, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36778713

RESUMO

Sucrose controls various developmental and metabolic processes in plants. It also functions as a signaling molecule in the synthesis of carbohydrates, storage proteins, and anthocyanins, as well as in floral induction and defense response. We found that sucrose preferentially induced OsWRKY7, whereas other sugars (such as mannitol, glucose, fructose, galactose, and maltose) did not have the same effect. A hexokinase inhibitor mannoheptulose did not block the effect of sucrose, which is consequently thought to function directly. MG132 inhibited sucrose induction, suggesting that a repressor upstream of OsWRKY7 is degraded by the 26S proteasome pathway. The 3-kb promoter sequence of OsWRKY7 was preferentially induced by sucrose in the luciferase system. Knockout mutants of OsWRKY7 were more sensitive to the rice blast fungus Magnaporthe oryzae, whereas the overexpression of OsWRKY7 enhanced the resistance, indicating that this gene is a positive regulator in the plant defense against this pathogen. The luciferase activity driven by the OsPR10a promoter was induced by OsWRKY7 and this transcription factor bound to the promoter region of OsPR10a, suggesting that OsWRKY7 directly controls the expression of OsPR10a. We conclude that sucrose promotes the transcript level of OsWRKY7, thereby increasing the expression of OsPR10a for the defense response in rice.

20.
J Hazard Mater ; 451: 131101, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-36878030

RESUMO

Phytoremediation of metals from water (WM) and nutrient (NM) media exposed to waste metal cutting fluid (WMCF) along with temperature (T) and humidity (H) stress was tested using Azolla imbricata (Roxb.) Nakai. In the absence of WMCF, biomass was higher in NM than in WM during all tests. Surprisingly, opposite results were noted in the presence of WMCF, with growth failing at exposure to > 0.1% and > 0.5% in NM and WM, respectively. Further, correlation analysis of the growth data following WM exposure revealed that biomass was affected positively by T and negatively by H and metal accumulation. Simultaneously, metal accumulation was affected negatively by T and positively by H. The average accumulations of Al, Cd, Cr, Fe, Pb, and Zn across all T/H tests were 540, 282, 71, 1645, 2494 and 1110 mg·kg-1, respectively. The observed bioconcentration factor indicated that A. imbricata acts as a hyperaccumulator or accumulator of Zn (>10) and as either accumulator (>1) or excluder (<1) of the other metals. Overall, the phytoremediation performance of A. imbricata in multi-metal-contaminated WMCF was high in WM under all environmental conditions. Therefore, the use of WM is an economically feasible approach for the removal of metals from WMCF.


Assuntos
Metais Pesados , Poluentes do Solo , Metais Pesados/análise , Biodegradação Ambiental , Umidade , Temperatura , Água/análise , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA