Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Nat Methods ; 14(12): 1141-1152, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29083403

RESUMO

We present a combined report on the results of three editions of the Cell Tracking Challenge, an ongoing initiative aimed at promoting the development and objective evaluation of cell segmentation and tracking algorithms. With 21 participating algorithms and a data repository consisting of 13 data sets from various microscopy modalities, the challenge displays today's state-of-the-art methodology in the field. We analyzed the challenge results using performance measures for segmentation and tracking that rank all participating methods. We also analyzed the performance of all of the algorithms in terms of biological measures and practical usability. Although some methods scored high in all technical aspects, none obtained fully correct solutions. We found that methods that either take prior information into account using learning strategies or analyze cells in a global spatiotemporal video context performed better than other methods under the segmentation and tracking scenarios included in the challenge.


Assuntos
Algoritmos , Rastreamento de Células/métodos , Interpretação de Imagem Assistida por Computador , Benchmarking , Linhagem Celular , Humanos
2.
Hum Brain Mapp ; 38(11): 5778-5794, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28815863

RESUMO

Most functional MRI (fMRI) studies map task-driven brain activity using a block or event-related paradigm. Sparse paradigm free mapping (SPFM) can detect the onset and spatial distribution of BOLD events in the brain without prior timing information, but relating the detected events to brain function remains a challenge. In this study, we developed a decoding method for SPFM using a coordinate-based meta-analysis method of activation likelihood estimation (ALE). We defined meta-maps of statistically significant ALE values that correspond to types of events and calculated a summation overlap between the normalized meta-maps and SPFM maps. As a proof of concept, this framework was applied to relate SPFM-detected events in the sensorimotor network (SMN) to six motor functions (left/right fingers, left/right toes, swallowing, and eye blinks). We validated the framework using simultaneous electromyography (EMG)-fMRI experiments and motor tasks with short and long duration, and random interstimulus interval. The decoding scores were considerably lower for eye movements relative to other movement types tested. The average successful rate for short and long motor events were 77 ± 13% and 74 ± 16%, respectively, excluding eye movements. We found good agreement between the decoding results and EMG for most events and subjects, with a range in sensitivity between 55% and 100%, excluding eye movements. The proposed method was then used to classify the movement types of spontaneous single-trial events in the SMN during resting state, which produced an average successful rate of 22 ± 12%. Finally, this article discusses methodological implications and improvements to increase the decoding performance. Hum Brain Mapp 38:5778-5794, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Imageamento por Ressonância Magnética/métodos , Atividade Motora/fisiologia , Piscadela/fisiologia , Deglutição/fisiologia , Eletromiografia , Movimentos Oculares/fisiologia , Dedos/fisiologia , Lateralidade Funcional , Humanos , Funções Verossimilhança , Boca/fisiologia , Músculo Esquelético/fisiologia , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Estudo de Prova de Conceito , Descanso , Dedos do Pé/fisiologia
3.
Blood Press Monit ; 26(4): 312-320, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33741776

RESUMO

Conventional blood pressure (BP) measurement methods have a number of drawbacks such as being invasive, cuff-based or requiring manual operation. Many studies are focussed on emerging methods of noninvasive, cuff-less and continuous BP measurement, and using only photoplethysmography to estimate BP has become popular. Although it is well known that physiological characteristics of the subject are important in BP estimation, this has not been widely explored. This article presents a novel method which adopts photoplethysmography and prior knowledge of a subject's physiological features to estimate DBP and SBP. Features extracted from a fingertip photoplethysmography signal and prior knowledge of a subject's physiological characteristics, such as gender, age, height, weight and BMI is used to estimate BP using three different machine learning models: artificial neural networks, support vector machine and least absolute shrinkage and selection operator regression. The accuracy of BP estimation obtained when prior knowledge of the physiological characteristics are incorporated into the model is superior to those which do not take the physiological characteristics into consideration. In this study, the best performing algorithm is an artificial neural network which obtains a mean absolute error and SD of 4.74 ± 5.55 mm Hg for DBP and 9.18 ± 12.57 mm Hg for SBP compared to 6.61 ± 8.04 mm Hg for DBP and 11.12 ± 14.20 mm Hg for SBP without prior knowledge. The inclusion of prior knowledge of the physiological characteristics can improve the accuracy of BP estimation using machine learning methods, and the incorporation of more physiological characteristics enhances the accuracy of the BP estimation.


Assuntos
Determinação da Pressão Arterial , Fotopletismografia , Algoritmos , Pressão Sanguínea , Humanos , Aprendizado de Máquina
4.
IEEE Trans Neural Netw ; 14(4): 781-93, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-18238059

RESUMO

Many researchers have explored the use of neural-network representations for the adaptive processing of data structures. One of the most popular learning formulations of data structure processing is backpropagation through structure (BPTS). The BPTS algorithm has been successful applied to a number of learning tasks that involve structural patterns such as logo and natural scene classification. The main limitations of the BPTS algorithm are attributed to slow convergence speed and the long-term dependency problem for the adaptive processing of data structures. In this paper, an improved algorithm is proposed to solve these problems. The idea of this algorithm is to optimize the free learning parameters of the neural network in the node representation by using least-squares-based optimization methods in a layer-by-layer fashion. Not only can fast convergence speed be achieved, but the long-term dependency problem can also be overcome since the vanishing of gradient information is avoided when our approach is applied to very deep tree structures.

5.
IEEE Trans Neural Netw ; 20(11): 1740-55, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19770091

RESUMO

In general, a fuzzy neural network (FNN) is characterized by its learning algorithm and its linguistic knowledge representation. However, it does not necessarily interact with its environment when the training data is assumed to be an accurate description of the environment under consideration. In interactive problems, it would be more appropriate for an agent to learn from its own experience through interactions with the environment, i.e., reinforcement learning. In this paper, three clustering algorithms are developed based on the reinforcement learning paradigm. This allows a more accurate description of the clusters as the clustering process is influenced by the reinforcement signal. They are the REINFORCE clustering technique I (RCT-I), the REINFORCE clustering technique II (RCT-II), and the episodic REINFORCE clustering technique (ERCT). The integrations of the RCT-I, the RCT-II, and the ERCT within the pseudo-outer product truth value restriction (POPTVR), which is a fuzzy neural network integrated with the truth restriction value (TVR) inference scheme in its five layered feedforward neural network, form the RPOPTVR-I, the RPOPTVR-II, and the ERPOPTVR, respectively. The Iris, Phoneme, and Spiral data sets are used for benchmarking. For both Iris and Phoneme data, the RPOPTVR is able to yield better classification results which are higher than the original POPTVR and the modified POPTVR over the three test trials. For the Spiral data set, the RPOPTVR-II is able to outperform the others by at least a margin of 5.8% over multiple test trials. The three reinforcement-based clustering techniques applied to the POPTVR network are able to exhibit the trial-and-error search characteristic that yields higher qualitative performance.


Assuntos
Inteligência Artificial , Lógica Fuzzy , Redes Neurais de Computação , Reconhecimento Automatizado de Padrão/métodos , Simulação por Computador , Interpretação Estatística de Dados , Reforço Psicológico , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA