Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2401916, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712442

RESUMO

Aqueous zinc-bromine batteries hold immense promise for large-scale energy storage systems due to their inherent safety and high energy density. However, achieving a reliable zinc metal electrode reaction is challenging because zinc metal in the aqueous electrolyte inevitably leads to dendrite growth and related side reactions, resulting in rapid capacity fading. Here, it is reported that combined cationic and anionic additives in the electrolytes using CeCl3 can simultaneously address the multiple chronic issues of the zinc metal electrode. Trivalent Ce3+ forms an electrostatic shielding layer to prevent Zn2+ from concentrating at zinc metal protrusions, while the high electron-donating nature of Cl- mitigates H2O decomposition on the zinc metal surface by reducing the interaction between Zn2+ and H2O. These combined cationic and anionic effects significantly enhance the reversibility of the zinc metal reaction, allowing the non-flow aqueous Zn─Br2 full-cell to reliably cycle with exceptionally high capacity (>400 mAh after 5000 cycles) even in a large-scale battery configuration of 15 × 15 cm2.

2.
Nanomaterials (Basel) ; 13(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37764584

RESUMO

Heteroatom-doped nanoporous carbon materials with unique hierarchical structures have been shown to be promising supports and catalysts for energy conversion; however, hard-template methods are limited by their inflexibility and time-consuming process. Soft-template methods have been suggested as an alternative, but they are limited by their picky requirements for stable reactions and the few known precursors for small-batch synthesis. In this study, a gram-scale soft-template-based silica-assisted method was investigated for producing nitrogen-doped hollow nanoporous carbon spheres (N-HNCS). Nitrogen doping is accomplished during preparation with enhanced electrocatalytic activity without complicating the methodology. To investigate the effect of the unique structural characteristics of N-HNCS (specific surface area: 1250 m2 g-1; pore volume: 1.2 cm3 g-1), cobalt was introduced as an active center for the oxygen reduction reaction. Finely tuned reaction conditions resulted in well-dispersed cobalt particles with minimal agglomeration. This sheds light on the advancement of new experimental procedures for developing more active and promising non-noble catalysts in large and stable batches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA