RESUMO
Methyl p-coumarate (methyl p-hydroxycinnamate) (MH) is a natural compound found in a variety of plants. In the present study, we evaluated the ameliorative effects of MH on airway inflammation in an experimental model of allergic asthma (AA). In this in vitro study, MH was found to exert anti-inflammatory activity on PMA-stimulated A549 airway epithelial cells by suppressing the secretion of IL-6, IL-8, MCP-1, and ICAM-1. In addition, MH exerted an inhibitory effect not only on NF-κB (p-NF-κB and p-IκB) and AP-1 (p-c-Fos and p-c-Jun) activation but also on A549 cell and EOL-1 cell (eosinophil cell lines) adhesion. In LPS-stimulated RAW264.7 macrophages, MH had an inhibitory effect on TNF-α, IL-1ß, IL-6, and MCP-1. The results from in vivo study revealed that the increases in eosinophils/Th2 cytokines/MCP-1 in the bronchoalveolar lavage fluid (BALF) and IgE in the serum of OVA-induced mice with AA were effectively inhibited by MH administration. MH also exerted a reductive effect on the immune cell influx, mucus secretion, and iNOS/COX-2 expression in the lungs of mice with AA. The effects of MH were accompanied by the inactivation of NF-κB. Collectively, the findings of the present study indicated that MH attenuates airway inflammation in mice with AA, suggesting its potential as an adjuvant in asthma therapy.
Assuntos
Asma , NF-kappa B , Animais , Camundongos , Líquido da Lavagem Broncoalveolar , Citocinas/metabolismo , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-6 , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , OvalbuminaRESUMO
Aromadendrin is a phenolic compound with various biological effects such as anti-inflammatory properties. However, its protective effects against acute lung injury (ALI) remain unclear. Therefore, this study aimed to explore the ameliorative effects of aromadendrin in an experimental model of lipopolysaccharide (LPS)-induced ALI. In vitro analysis revealed a notable increase in the levels of cytokine/chemokine formation, nuclear factor kappa B (NF-κB) activation, and myeloid differentiation primary response 88 (MyD88)/toll-like receptor (TLR4) expression in LPS-stimulated BEAS-2B lung epithelial cell lines that was ameliorated by aromadendrin pretreatment. In LPS-induced ALI mice, the remarkable upregulation of immune cells (ICs) and IL-1ß/IL-6/TNF-α levels in the bronchoalveolar lavage fluid (BALF) and inducible nitric oxide synthase (iNOS)/cyclooxygenase-2 (COX-2)/CD68 expression in lung was decreased by the oral administration of aromadendrin. Histological analysis revealed the presence of cells in the lungs of acute lung injury (ALI) mice, which was alleviated by aromadendrin. In addition, aromadendrin ameliorated lung edema. This in vivo effect of aromadendrin was accompanied by its inhibitory effect on LPS-induced NF-κB activation, MyD88/TLR4 expression, and signal transducer and activator of transcription 3 (STAT3) activation. Furthermore, aromadendrin increased the expression of heme oxygenase-1 (HO-1)/ NAD(P)H quinone dehydrogenase 1 (NQO1) in the lungs of ALI mice. In summary, the in vitro and in vivo studies demonstrated that aromadendrin ameliorated endotoxin-induced pulmonary inflammation by suppressing cytokine formation and NF-κB activation, suggesting that aromadendrin could be a useful adjuvant in the treatment of ALI.
RESUMO
Allergic asthma is a major health burden on society as a chronic respiratory disease characterized by inflammation and muscle tightening around the airways in response to inhaled allergens. Daphne kiusiana Miquel is a medicinal plant that can suppress allergic airway inflammation; however, its specific molecular mechanisms of action are unclear. In this study, we aimed to elucidate the mechanisms by which D. kiusiana inhibits allergic airway inflammation. We evaluated the anti-inflammatory effects of the ethyl acetate (EA) fraction of D. kiusiana and its major compound, daphnetin, on murine T lymphocyte EL4 cells stimulated with phorbol 12-myristate 13-acetate and ionomycin in vitro and on asthmatic mice stimulated with ovalbumin in vivo. The EA fraction and daphnetin inhibited T-helper type 2 (Th2) cytokine secretion, serum immunoglobulin E production, mucus secretion, and inflammatory cell recruitment in vivo. In vitro, daphnetin suppressed intracellular Ca2+ mobilization (a critical regulator of nuclear factor of activated T cells) and functions of the activator protein 1 transcription factor to reduce interleukin (IL)-4 and IL-13 expression. Daphnetin effectively suppressed the IL-4/-13-induced activation of Janus kinase (JAK)/signal transducer and activator of transcription 6 (STAT6) signaling in vitro and in vivo, thereby inhibiting the expression of GATA3 and PDEF, two STAT6-target genes responsible for producing Th2 cytokines and mucins. These findings indicate that daphnetin suppresses allergic airway inflammation by stabilizing intracellular Ca2+ levels and subsequently inactivating the JAK/STAT6/GATA3/PDEF pathway, suggesting that daphnetin is a promising alternative to existing asthma treatments.
Assuntos
Asma , Janus Quinases , Fator de Transcrição STAT6 , Transdução de Sinais , Umbeliferonas , Animais , Umbeliferonas/farmacologia , Umbeliferonas/uso terapêutico , Fator de Transcrição STAT6/metabolismo , Transdução de Sinais/efeitos dos fármacos , Camundongos , Asma/tratamento farmacológico , Asma/imunologia , Asma/metabolismo , Janus Quinases/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Feminino , Citocinas/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Células Th2/efeitos dos fármacos , Células Th2/imunologia , Linhagem Celular , Daphne/química , Fator de Transcrição GATA3/metabolismo , Fator de Transcrição GATA3/genética , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Cálcio/metabolismoRESUMO
Methyl phydroxycinnamate (MH), an esterified derivative of pCoumaric acid exerts antiinflammatory effects on lipopolysaccharide (LPS)stimulated RAW264.7 macrophages. Based on these effects, the present study investigated the protective role of MH in a mouse model of LPSinduced acute respiratory distress syndrome (ARDS). The results demonstrated that administration of LPS (5 mg/kg intranasally) markedly increased the neutrophil/macrophage numbers and levels of inflammatory molecules (TNFα, IL6, IL1ß and reactive oxygen species) in the bronchoalveolar lavage ï¬uid (BALF) of mice. On histological examination, the presence of inflammatory cells was observed in the lungs of mice administered LPS. LPS also notably upregulated the secretion of monocyte chemoattractant protein1 and protein content in BALF as well as expression of inducible nitric oxide synthase in the lungs of mice; it also caused activation of p38 mitogenactivated protein kinase (MAPK) and NFκB signaling. However, MH treatment significantly suppressed LPSinduced upregulation of inflammatory cell recruitment, inflammatory molecule levels and p38MAPK/NFκB activation, and also led to upregulation of heme oxygenase1 (HO1) expression in the lungs of mice. In addition, the ability of MH to induce HO1 expression was confirmed in RAW264.7 macrophages. Taken together, the findings of the present study indicated that MH may exert protective effects against airway inflammation in ARDS mice by inhibiting inflammatory cell recruitment and the production of inflammatory molecules.