Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2554, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519461

RESUMO

Reconfigurable tactile displays are being used to provide refreshable Braille information; however, the delivered information is currently limited to an alternative of Braille because of difficulties in controlling the deformation height. Herein, we present a photothermally activated polymer-bilayer-based morphable tactile display that can programmably generate tangible three-dimensional topologies with varying textures on a thin film surface. The morphable tactile display was composed of a heterogeneous polymer structure that integrated a stiffness-tunable polymer into a light-absorbing elastomer, near-infra-red light-emitting diode (NIR-LED) array, and small pneumatic chamber. Topological expression was enabled by producing localized out-of-plane deformation that was reversible, height-adjustable, and latchable in response to light-triggered stiffness modulation at each target area under switching of stationary pneumatic pressure. Notably, the tactile display could express a spatial softness map of the latched topology upon re-exposing the target areas to modulated light from the NIR-LED array. We expect the developed tactile display to open a pathway for generating high-dimensional tactile information on electronic devices and enable realistic interaction in augmented and virtual environments.

2.
Polymers (Basel) ; 14(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36080677

RESUMO

In this paper, we propose a novel and facile methodology to chemically construct a thin and highly compliant metallic electrode onto a twisted and coiled nylon-6 fiber (TCN) with a three-dimensional structure via surface modification of the TCN eliciting gold-sulfur (Au-S) interaction for enabling durable electro-thermally-induced actuation performance of a TCN actuator (TCNA). The surface of the TCN exposed to UV/Ozone plasma was modified to (3-mercaptopropyl)trimethoxysilane (MPTMS) molecules with thiol groups through a hydrolysis-condensation reaction. Thanks to the surface modification inducing strong interaction between gold and sulfur as a formation of covalent bonds, the Au electrode on the MPTMS-TCN exhibited excellent mechanical robustness against adhesion test, simultaneously could allow overall surface of the TCN to be evenly heated without any significant physical damages during repetitive electro-thermal heating tests. Unlike the TCNAs with physically coated metallic electrode, the TCNA with the Au electrode established on the MPTMS-TCN could produce a large and repeatable contractile strain over 12% as lifting a load of 100 g even during 2000 cyclic actuations. Demonstration of the durable electrode for the TCNA can lead to technical advances in artificial muscles for human-assistive devices as well as soft robots those requires long-term stability in operation.

3.
Polymers (Basel) ; 12(11)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187228

RESUMO

Poly(dimethylsiloxane) (PDMS) has been extensively used as an electroactive polymer material because it exhibits not only excellent moldability but also mechanical properties sufficient enough for electroactive performance despite low dielectric permittivity. Its low dielectric property is due to its molecular non-polarity. Here, we introduce a polar group into a PDMS elastomer by using vinyl acetate (VAc) as a crosslinker to improve the dielectric permittivity. We synthesized a high-molecular weight PDMS copolymer containing vinyl groups, namely poly(dimethylsiloxane-co-methylvinylsiloxane) (VPDMS), and prepared several of the VPDMS solutions in VAc. We obtained transparent PDMS films by UV curing of the solution layers. Electromechanical actuation-related physical properties of one of the UV-cured films were almost equivalent to or superior to those of platinum-catalyzed hydrosilylation-cured PDMS films. In addition, saponification of the UV-cured film significantly improved the electrical and mechanical properties (ɛ' ~ 44.1 pF/m at 10 kHz, E ~ 350 kPa, ɛ ~ 320%). The chemical introduction of VAc into PDMS main chains followed by saponification would offer an efficacious method of enhancing the electroactive properties of PDMS elastomers.

4.
Sci Rep ; 10(1): 16937, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33037237

RESUMO

We propose a monolithic focus-tunable lens structure based on the dielectric-elastomer actuator (DEA) technology. In our focus-tunable lens, a soft lens and radial in-plane actuator mimicking the ocular focal-tuning mechanism are constructed in a single body of an optimized dielectric-elastomer film. We provide device fabrication methods including elastomer synthesis, structure formation, and packaging process steps. Performance test measurements show 93% focal tunability and 7 ms response time under static and dynamic electrical driving conditions, respectively. These performance characteristics are substantially enhanced from the previous polylithic DEA tunable lens by a factor 1.4 for the focal tunability and a factor 9.4 for the dynamic tuning-speed limit. Therefore, we obtain greatly enhanced focal tuning control in a remarkably simple and compact device structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA