Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
RNA Biol ; 21(1): 1-18, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38361426

RESUMO

Protein aggregation, a consequence of misfolding and impaired proteostasis, can lead to cellular malfunctions such as various proteinopathies. The mechanisms protecting proteins from aggregation in complex cellular environments have long been investigated, often from a protein-centric viewpoint. However, our study provides insights into a crucial, yet overlooked actor: RNA. We found that depleting RNAs from Escherichia coli lysates induces global protein aggregation. Our quantitative mass spectrometry analysis identified over 900 statistically significant proteins from the Escherichia coli proteome whose solubility depends on RNAs. Proteome-wide characterization showed that the RNA dependency is particularly enriched among acidic proteins, intrinsically disordered proteins, and structural hub proteins. Moreover, we observed distinct differences in RNA-binding mode and Gene Ontology categories between RNA-dependent acidic and basic proteins. Notably, the solubility of key molecular chaperones [Trigger factor, DnaJ, and GroES] is largely dependent on RNAs, suggesting a yet-to-be-explored hierarchical relationship between RNA-based chaperone (termed as chaperna) and protein-based chaperones, both of which constitute the whole chaperone network. These findings provide new insights into the RNA-centric role in maintaining healthy proteome solubility in vivo, where proteins associate with a variety of RNAs, either stably or transiently.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteoma/metabolismo , Dobramento de Proteína , RNA/metabolismo , Solubilidade , Proteômica , Ponto Isoelétrico , Agregados Proteicos , Proteínas de Escherichia coli/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Espectrometria de Massas
2.
Br J Cancer ; 128(12): 2186-2196, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37059804

RESUMO

BACKGROUND: In EGFR-mutant and MET-amplified lung cancer resistant to EGFR inhibitors, double blockade of EGFR and MET is considered as a reasonable strategy despite increasing toxicity. This study evaluated the single MET inhibition in these specific tumours. METHODS: We investigated the efficacy of a single MET inhibitor in EGFR-mutant, MET-amplified lung cancer cells (HCC827GR) and the matched clinical cases and patient-derived cells. Acquired resistance mechanisms to single MET inhibitor were further explored. RESULTS: Single MET inhibitor sufficiently inhibited the EGFR downstream signalling and proliferation in the HCC827GR cells. The MET-inhibitor-sensitive clones had similar EGFR mutation allele frequency as the MET-inhibitor-resistant clones. The patients with EGFR-mutant, MET-amplified lung cancer resistant to EGFR inhibitors showed definite response to single MET inhibitor but the response duration was not durable. The MET gene copy number in their plasma circulating tumour DNA was significantly decreased during the treatment and was not re-increased after progression. In the cells resistant to single MET inhibitor, the EGFR pathway was reactivated, and gefitinib alone successfully suppressed their growth. CONCLUSIONS: Single MET inhibition produced a short-lived response in EGFR-mutant and MET-amplified lung cancer. A further study of a novel combination therapy schedule is needed to achieve long-lasting efficacy and less toxicity.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Gefitinibe , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Mutação , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-met/genética
3.
Gut Liver ; 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38031491

RESUMO

Background/Aims: : Functional dyspepsia (FD) has long been regarded as a syndrome because its pathophysiology is multifactorial. However, recent reports have provided evidence that changes in the duodenal ecosystem may be the key. This study aimed to identify several gastrointestinal factors and biomarkers associated with FD, specifically changes in the duodenal ecosystem that may be key to understanding its pathophysiology. Methods: : In this case-control study, 28 participants (12 with FD and 16 healthy control individuals) were assessed for dietary nutrients, gastrointestinal symptom severity, immunological status of the duodenal mucosa, and microbiome composition from oral, duodenal, and fecal samples. Integrated data were analyzed using immunohistochemistry, real-time polymerase chain reaction, 16S rRNA sequencing, and network analysis. Results: : Duodenal mucosal inflammation and impaired expression of tight junction proteins were confirmed in patients with FD. The relative abundance of duodenal Streptococcus (p=0.014) and reductions in stool Butyricicoccus (p=0.047) were confirmed. These changes in the gut microbiota were both correlated with symptom severity. Changes in dietary micronutrients, such as higher intake of valine, were associated with improved intestinal barrier function and microbiota. Conclusions: : This study emphasizes the relationships among dietary nutrition, oral and gut microbiota, symptoms of FD, impaired function of the duodenal barrier, and inflammation. Assessing low-grade inflammation or increased permeability in the duodenal mucosa, along with changes in the abundance of stool Butyricicoccus, is anticipated to serve as effective biomarkers for enhancing the objectivity of FD diagnosis and monitoring.

4.
Polymers (Basel) ; 14(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36501591

RESUMO

The main advantages of the three-dimensional (3D) printing process are flexible design, rapid prototyping, multi-component structures, and minimal waste. For stereolithography (SLA) 3D printing, common photocurable polymers, such as bisphenol-A glycidyl methacrylate (Bis-EMA), trimethylolpropane triacrylate (TMPTMA), as well as urethane oligomers, have been widely used. For a successful 3D printing process, these photocurable polymers must satisfy several requirements, including transparency, a low viscosity, good mechanical strength, and low shrinkage post-ultraviolet curing process. Herein, we investigated SLA-type photocurable resins prepared using Bis-EMA, TMPTMA, and urethane oligomers. The flexural strength, hardness, conversion rate, output resolution, water absorption, and solubility of the printed materials were investigated. The degree of conversion of the printed specimens measured by infrared spectroscopy ranged from 30 to 60%. We also observed that 64-80 MPa of the flexural strength, 40-60 HV of the surface hardness, 15.6-29.1 MPa of the compression strength, and 3.3-14.5 MPa of the tensile strength. The output resolution was tested using three different structures comprising a series of columns (5-50 mm), circles (0.6-6 mm), and lines (0.2-5 mm). In addition, we used five different pigments to create colored resins and successfully printed complex models of the Eiffel Tower. The research on resins, according to the characteristics of these materials, will help in the design of new materials. These results suggests that acrylate-based resins have the potential for 3D printing.

5.
Nanomaterials (Basel) ; 12(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35335733

RESUMO

Recently, lead halide perovskite nanocrystals have been considered as potential light-emitting materials because of their narrow full width at half-maximum (FWHM) and high photoluminescence quantum yield (PLQY). In addition, they have various emission spectra because the bandgap can be easily tuned by changing the size of the nanocrystals and their chemical composition. However, these perovskite materials have poor long-term stability due to their sensitivity to moisture. Thus far, various approaches have been attempted to enhance the stability of the perovskite nanocrystals. However, the required level of stability in the mass production process of perovskite nanocrystals under ambient conditions has not been secured. In this work, we developed a facile two-step ball-milling and ethanol/water-induced phase transition method to synthesize stable CsPbBr3 perovskite materials. We obtained pure CsPbBr3 perovskite solutions with stability retention of 86% for 30 days under ambient conditions. Our materials show a high PLQY of 35% in solid films, and excellent thermal stability up to 80 °C. We believe that our new synthetic method could be applicable for the mass production of light-emitting perovskite materials.

6.
Cancers (Basel) ; 14(6)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35326664

RESUMO

BACKGROUND: Prediction of resistance mechanisms for epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) remains challenging. Thus, we investigated whether resistant cancer cells that expand shortly after EGFR-TKI treatment would eventually cause the resistant phenotype. METHODS: We generated two EGFR-mutant lung cancer cell lines resistant to gefitinib (PC9GR and HCC827GR). The parent cell lines were exposed to short-term treatment with gefitinib or paclitaxel and then were assessed for EGFR T790M mutation and C-MET expression. These experiments were repeated in vivo and in clinically relevant patient-derived cell (PDC) models. For validation in clinical cases, we measured these gene alterations in plasma circulating tumor DNA (ctDNA) before and 8 weeks after starting EGFR-TKIs in four patients with EGFR-mutant lung cancer. RESULTS: T790M mutation was only detected in the PC9GR cells, whereas C-MET amplification was detected in the HCC827GR cells. The T790M mutation level significantly increased in PC9 cells after short-term treatment with gefitinib but not in the paclitaxel. C-MET mRNA expression was only significantly increased in gefitinib-treated HCC827 cells. We confirmed that the C-MET copy number in HCC827 cells that survived after short-term gefitinib treatment was significantly higher than that in dead HCC827 cells. These findings were reproduced in the in vivo and PDC models. An early on-treatment increase in the plasma ctDNA level of these gene alterations was correlated with the corresponding resistance mechanism to EGFR-TKIs, a finding that was confirmed in post-treatment tumor tissues. CONCLUSIONS: Early on-treatment kinetics in resistance-related gene alterations may predict the final mechanism of EGFR-TKI resistance.

7.
Cell Death Dis ; 13(9): 821, 2022 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-36153316

RESUMO

Ubiquitin-specific protease 1 (USP1) is a deubiquitinase involved in DNA damage repair by modulating the ubiquitination of major regulators, such as PCNA and FANCD2. Because USP1 is highly expressed in many cancers, dysregulation of USP1 contributes to cancer therapy. However, the role of USP1 and the mechanisms underlying chemotherapy remain unclear. In this study, we found high USP1 expression in tumor tissues and that it correlated with poor prognosis in RCC. Mechanistically, USP1 enhanced survivin stabilization by removing ubiquitin. Pharmacological inhibitors (ML23 and pimozide) and siRNA targeting USP1 induced downregulation of survivin expression. In addition, ML323 upregulated DR5 expression by decreasing miR-216a-5p expression at the post-transcriptional level, and miR-216a-5p mimics suppressed the upregulation of DR5 by ML323. Inhibition of USP1 sensitized cancer cells. Overexpression of survivin or knockdown of DR5 markedly prevented the co-treatment with ML323 and TRAIL-induced apoptosis. These results of in vitro were proved in a mouse xenograft model, in which combined treatment significantly reduced tumor size and induced survivin downregulation and DR5 upregulation. Furthermore, USP1 and survivin protein expression showed a positive correlation, whereas miR-216a-5p and DR5 were inversely correlated in RCC tumor tissues. Taken together, our results suggest two target substrates of USP1 and demonstrate the involvement of survivin and DR5 in USP1-targeted chemotherapy.


Assuntos
Antineoplásicos , Carcinoma de Células Renais , Neoplasias Renais , MicroRNAs , Proteases Específicas de Ubiquitina , Animais , Antineoplásicos/farmacologia , Apoptose/genética , Carcinoma de Células Renais/metabolismo , Linhagem Celular Tumoral , Enzimas Desubiquitinantes/genética , Regulação para Baixo/genética , Humanos , Camundongos , MicroRNAs/metabolismo , Pimozida/farmacologia , Antígeno Nuclear de Célula em Proliferação/metabolismo , RNA Interferente Pequeno/farmacologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF , Survivina/genética , Survivina/metabolismo , Proteases Específicas de Ubiquitina/antagonistas & inibidores , Proteases Específicas de Ubiquitina/genética , Ubiquitinas/metabolismo , Regulação para Cima/genética
8.
Microorganisms ; 9(10)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34683361

RESUMO

Akkermansia muciniphila (A. muciniphila) is a promising probiotic candidate owing to its health-promoting properties. A previous study reported that the pasteurized form of A. muciniphila strains isolated from human stool samples had a beneficial impact on high-fat diet-induced obese mice. On the other hand, the differences in the probiotic effects between live and pasteurized A. muciniphila on the metabolism and immune system of the host are still inconclusive. This study examines the differences between the live and pasteurized forms of A. muciniphila strains on the lipid and glucose metabolism and on regulating the inflammatory immune responses using a HFD-fed obese mouse model. The animals were administered the live and pasteurized forms of two A. muciniphila strains five times per week for the entire study period of 12 weeks. Both forms of the bacterial strains improved the HFD-induced obesity and metabolic dysregulation in the mice by preventing body-weight gains after one week. In addition, they cause a decrease in the weights of the major adipose tissues, adipogenesis/lipogenesis and serum TC levels, improvement in glucose homeostasis and suppression of inflammatory insults. Furthermore, these treatments restored the damaged gut architecture and integrity and improved the hepatic structure and function in HFD-induced animals. On the other hand, for both bacterial strains, the pasteurized form was more potent in improving glucose tolerance than the live form. Moreover, specific A. muciniphila preparations with either live or pasteurized bacteria decreased the number and population (%) of splenic Treg cells (CD4+ Foxp3+) significantly in the HFD-fed animals, further supporting the anti-inflammatory properties of these bacteria.

9.
Front Pharmacol ; 12: 665881, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34381356

RESUMO

Panax notoginseng (PN) is a traditional herbal medicine containing several active compounds such as saponins and ginsenosides with many therapeutic applications including anti-obesity activity. Fermentation by lactic acid bacteria has the potential to metabolize ginsenosides to more active forms. This study examined whether fermentation has any benefits on the protective effects of a PN extract against obesity using a high-fat diet (HFD)-fed mouse model. PN was fermented with Lactobacillus plantarum which exhibited high ß-glucosidase activity. Upon fermentation, the PN extract exhibited an altered ginsenoside profile, a dramatic increase in the lactate level. Treatment of the HFD group with fermented PN (FPN), but not PN, decreased both the food and calorie intake significantly, which was consistent with the more potent suppressing effects of FPN than PN on the signaling pathways involved in appetite and energy intake. The PN treatment also modulated the gut microbial composition. The PN and FPN treatment groups showed clear differences in the population of gut microbiota. The relative abundance of Bacteroidetes, Erysipelotrichaceae, Coprococus, and Dehalobacterium were significantly higher in the FPN group then the normal, HFD, and XEN groups. Furthermore, the relative abundances of Akkermansia, Dehalobacterium, Erysipeliotrichaceae and parpabacteroides were significantly higher in the FPN group than the PN group, but the relative abundances of Allobaculum, Erysipelotrichi and Erysipelotrichale were significantly lower. The relative abundance of Bacteroides and Lactococcus was significantly higher and lower, respectively in the PN and FPN groups than the HFD group. In conclusion, the altered ginsenoside and organic acid's profile, and altered gut microbial composition are believed to be the major factors contributing to the anti-obesity properties of FPN.

10.
Polymers (Basel) ; 13(3)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513679

RESUMO

We synthesized medium-band-gap donor-acceptor (D-A) -type conjugated polymers (PBTZCZ-L and PBTZCZ-H) consisting of a benzotriazole building block as an acceptor and a carbazole unit as a donor. In comparison with the polymers, a small conjugated molecule (BTZCZ-2) was developed, and its structural, thermal, optical, and photovoltaic properties were investigated. The power conversion efficiency (PCE) of the BTZCZ-2-based solar cell devices was less than 0.5%, considerably lower than those of polymer-based devices with conventional device structures. However, inverted solar cell devices configured with glass/ITO/ZnO:PEIE/BTZCZ-2:PC71BM/MoO3/Ag showed a tremendously improved efficiency (PCE: 5.05%, Jsc: 9.95 mA/cm2, Voc: 0.89 V, and FF: 57.0%). We believe that this is attributed to high energy transfer and excellent film morphologies.

11.
Drug Metab Pharmacokinet ; 38: 100391, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33872946

RESUMO

Carboxylesterase (CES) plays an important role in the hydrolysis metabolism of ester-type drugs and prodrugs. In this study, we investigated the change in the hydrolysis rate of hCE1 by focusing on the steric hindrance of the ester structure and the electron density. For 26 kinds of synthesized indomethacin prodrugs, the hydrolytic rate was measured in the presence of human liver microsomes (HLM), human small intestine microsomes (HIM), hCE1 and hCE2. The synthesized prodrugs were classified into three types: an alkyl ester type that is specifically metabolized by hCE1, a phenyl ester type that is more easily metabolized by hCE1 than by hCE2, and a carbonate ester type that is easily metabolized by both hCE1 and hCE2. The hydrolytic rate of 1-methylpentyl (hexan-2-yl) ester was 10-times lower than that of 4-methylpentyl ester in hCE1 solution. hCE2 was susceptible to electron density of the substrate, and there was a difference in the hydrolysis rate of up to 3.5-times between p-bromophenyl ester and p-acetylphenyl ester. By changing the steric hindrance and electron density of the alkoxy group, the factors that change the hydrolysis rate by CES were elucidated.


Assuntos
Ativação Metabólica/efeitos dos fármacos , Carboxilesterase/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Ésteres/metabolismo , Pró-Fármacos/metabolismo , Pró-Fármacos/uso terapêutico , Elétrons , Humanos , Hidrólise/efeitos dos fármacos , Indometacina/metabolismo , Indometacina/uso terapêutico , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Pessoa de Meia-Idade , Especificidade por Substrato
12.
Nutrients ; 12(2)2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31973042

RESUMO

BACKGROUND: Puerariae Radix (PR), the dried root of Pueraria lobata, is reported to possess therapeutic efficacies against various diseases including obesity, diabetes, and hypertension. Fermentation-driven bioactivation of herbal medicines can result in improved therapeutic potencies and efficacies. METHODS: C57BL/6J mice were fed a high-fat diet and fructose in water with PR (400 mg/kg) or PR fermented by Bifidobacterium breve (400 mg/kg) for 10 weeks. Histological staining, qPCR, Western blot, and 16s rRNA sequencing were used to determine the protective effects of PR and fermented PR (fPR) against metabolic dysfunction. RESULTS: Treatment with both PR and fPR for 10 weeks resulted in a reduction in body weight gain with a more significant reduction in the latter group. Lactate, important for energy metabolism and homeostasis, was increased during fermentation. Both PR and fPR caused significant down-regulation of the intestinal expression of the MCP-1, IL-6, and TNF-α genes. However, for the IL-6 and TNF-α gene expressions, the inhibitory effect of fPR was more pronounced (p < 0.01) than that of PR (p < 0.05). Oral glucose tolerance test results showed that both PR and fPR treatments improved glucose homeostasis. In addition, there was a significant reduction in the expression of hepatic gene PPARγ, a key regulator of lipid and glucose metabolism, following fPR but not PR treatment. Activation of hepatic AMPK phosphorylation was significantly enhanced by both PR and fPR treatment. In addition, both PR and fPR reduced adipocyte size in highly significant manners (p < 0.001). Treatment by fPR but not PR significantly reduced the expression of PPARγ and low-density lipoproteins in adipose tissue. CONCLUSION: Treatment with fPR appears to be more potent than that of PR in improving the pathways related to glucose and lipid metabolism in high-fat diet (HFD)+fructose-fed animals. The results revealed that the process of fermentation of PR enhanced lactate and facilitated the enrichment of certain microbial communities that contribute to anti-obesity and anti-inflammatory activities.


Assuntos
Lactatos/farmacologia , Doenças Metabólicas/tratamento farmacológico , Extratos Vegetais/farmacologia , Raízes de Plantas , Pueraria , Animais , Bifidobacterium breve , Glicemia/efeitos dos fármacos , Dieta Hiperlipídica , Fermentação , Metabolismo dos Lipídeos/efeitos dos fármacos , Doenças Metabólicas/etiologia , Doenças Metabólicas/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Microbiota/efeitos dos fármacos , Substâncias Protetoras/farmacologia
13.
Int J Biol Macromol ; 120(Pt A): 245-254, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30138663

RESUMO

The present study was carried out to investigate the physicochemical and structural properties of pectic polysaccharide extracted from Ulmus davidiana (UDP) and to determine the physicochemical, structural, and rheological properties of esterified UDP with succinic acid (ES-UDP). The results indicated that UDP had high amounts of galacturonic acids and various neutral sugars, such as galactose, rhamnose, and glucose. UDP was identified as a low methoxyl pectin, consisting of 1,4-linked α-d-GalpA (the main backbone chain), supported by the results of Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction, and 1D Nuclear magnetic resonance (NMR) spectroscopy. In the FT-IR and XRD, no difference was detected between UPD and ES-UDPs. However, 1H and 13C NMR spectra revealed that the new ester bonds were formed between a hydroxyl group of UDP and a carboxyl group of succinic acid during esterification. In the steady shear rheological analysis, the consistency index (K) of ES-UDP was significantly higher than that of UDP and increased significantly with increasing concentration of succinic acid. In the dynamic rheological analysis, the tan δ values of all ES-UDP solutions were significantly lower than those of the UDP solution.


Assuntos
Pectinas/química , Ácido Succínico/química , Ulmus/química , Configuração de Carboidratos , Esterificação
14.
Int J Biol Macromol ; 111: 311-318, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29309871

RESUMO

The specific objective of this study was to investigate characterization, selenylation, and anti-inflammatory activities of pectic polysaccharides extracted from Ulmus pumila L. (PPU). Four different monosaccharides were found in PPU, including galacturonic acid, galactose, rhamnose, and glucose. FT-IR spectra indicated that pectic polysaccharides were successfully extracted from Ulmus pumila L., and were probably low methoxyl pectin. GC-MS and NMR analysis of PPU suggested the major monosaccharide of PPU was α-1,4-linked galacturonic acid with α-1,2-linked rhamnose as the backbone and glucose or galactose residues as branches at C-3 and C-4 positions of rhamnose. Selenylation of PPU was synthesized by 0.2 and 0.4% of sodium selenites. Selenized-PPU (Se-PPU) inhibited LPS-induced nitric oxide production in RAW 264.7 cells, and increasing selenium content enhanced anti-inflammatory properties of PPU. Therefore, Se-PPU can be used as a potential source of bioactive compounds for nutraceuticals and pharmaceutical applications.


Assuntos
Anti-Inflamatórios/química , Pectinas/química , Polissacarídeos/química , Ulmus/química , Animais , Anti-Inflamatórios/administração & dosagem , Galactose/química , Ácidos Hexurônicos/química , Camundongos , Monossacarídeos/química , Pectinas/administração & dosagem , Polissacarídeos/administração & dosagem , Células RAW 264.7 , Ramnose/química , Selênio/química , Espectroscopia de Infravermelho com Transformada de Fourier
15.
Phytomedicine ; 24: 24-30, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28160858

RESUMO

BACKGROUND: Despite the benefits from different options of therapy for breast cancer, resistance of the disease to these therapies is rising and a novel agent is needed. Erythro-austrobailignan-6 (EA6) exhibits anti-cancer activity. However, the detailed anti-tumor mechanisms by which EA6 inhibits 4T-1 and MCF-7 cell growth have not been well studied. PURPOSE: In this study, we investigated the anti-proliferative and anti-tumor properties of EA6 on breast carcinoma and its accompanying mechanisms. METHODS: The cytotoxic and apoptotic effect of EA6 were measured in breast cancer cell lines of 4T-1 and MCF-7. The role of EA6 on cell proliferation and migration was examined by immunoblotting. The anti-tumor activity of EA6 was assessed in mice inoculated with 4T-1 breast cancer cells. RESULTS: EA6 increased the number of Annexin V-positive apoptotic bodies and cleaved form of caspase-3 in a dose-dependent manner and phosphorylated JNK and p38 in both cells. Moreover, EA6 down-regulated cell cycle dependent proteins of CDK-4 and cyclin D1, and increased G0/G1 population in both cells. EA6-induced apoptosis is mediated by p38 MAPK and caspase-3 activation in both cells. EA6 significantly reduced HER2/EGFR/integrin ß3 expression and Src phosphorylation, which was dependent on p38 MAPK activation in 4T-1 and MCF-7 cells. Furthermore, we confirmed the down-regulation of topoisomerases by EA6 treatment, but the overall effects of EA6 on topoisomerase isotype were cell type specific. Finally, EA6 (20mg/kg/day) significantly reduced mammary tumor volume in 4T-1 bearing mice by down-regulating HER2/EGFR/integrin ß3 expression in tumor tissues. CONCLUSIONS: Our results offer a novel insight into the mechanism of EA6-induced apoptosis in breast cancer cells. We propose that EA6 treatment resulted in the activation of p38 MAPK and caspase-3, which eventually participated in regulating apoptosis in 4T-1 and MCF-7 cells.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Lignanas/uso terapêutico , Células MCF-7/efeitos dos fármacos , Extratos Vegetais/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Fitoterapia , Extratos Vegetais/uso terapêutico , Proteínas Quinases p38 Ativadas por Mitógeno/genética
16.
Mol Neurobiol ; 54(1): 450-460, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-26742522

RESUMO

Alzheimer's disease (AD) is a progressive degenerative condition. In order to treat AD, the use of a "drug repositioning" or "repurposing" approach with potential disease-modifying compounds has been increased. The new generation antipsychotics are commonly used in AD and other dementias for the treatment of psychosis and behavioral symptoms, and several animal models have shown the effects of these potential disease-modifying compounds. In this study, we examined whether long-term clozapine treatment could reduce amyloid beta (Aß) deposition and cognitive impairment in transgenic mice of AD, Tg-APPswe/PS1dE9. AD mice were fed clozapine at 20 mg/kg/day for 3 months from 4.5 months of age. Intake of clozapine improved the Aß-induced memory impairment and suppressed Aß levels and plaque deposition in the brain of AD mice. Clozapine upregulated Trk, brain-derived neurotrophic factor, cyclin-dependent kinase-5, and p35 in the cortex and hippocampus of AD mice and activated AMP-activated protein kinase (AMPK). As a downstream effector of AMPK, beta-secretase expression was decreased by clozapine administration. Moreover, clozapine-phosphorylated synapsin I at Ser9 and Ser549 sites in the hippocampus and cortex of AD mice, which may be involved in synaptic strength. This study suggests that as one of candidate for multi-target approach of AD treatment, clozapine is proposed as a therapeutic drug for treatment of AD patients.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Clozapina/uso terapêutico , Transtornos da Memória/metabolismo , Fragmentos de Peptídeos/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Clozapina/farmacologia , Masculino , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fragmentos de Peptídeos/genética , Presenilina-1/genética
17.
Oncotarget ; 7(28): 43315-43323, 2016 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-27270313

RESUMO

Drug-resistant cell lines are essential tools for investigating the mechanisms of resistance to molecular-targeted anti-cancer drugs. However, little is known about how to establish clinically relevant drug-resistant cell lines. Our study examined the impact of a drug-free period on the establishment of a cell line with clinically relevant resistance to molecular-targeted drugs. We used PC9 cells, a lung cancer cell line carrying EGFR mutation, because this is a validated target for EGFR tyrosine kinase inhibitors (TKI). PC9 cells were intermittently or continuously exposed to increasing concentrations of gefitinib (0.01 µM to 1.0 µM) and the emergence of the most common acquired resistance mutation in EGFR, T790M, was determined. T790M was detected at a 25-fold lower drug concentration in cells continuously exposed to gefitinib (PC9/GRc) than in cells intermittently exposed to gefitinib (PC9/GRi) (0.04 µM vs 1.0 µM, respectively). The mutation frequencies at those drug concentrations were 19.8% and 8.0% in PC9/GRc and PC9/GRi cells, respectively. After drug-free culture for 8 weeks, resistance to gefitinib decreased in the PC9/GRi cells but not in the PC9/GRc cells. In the PC9/GRc cells, the frequency of the T790M mutation was consistently about 20% from 0.04 µM to 1.0 µM of gefitinib. In the PC9/GRc cells, the T790M mutation was detected in all single-cell clones, at frequencies ranging from 7.0% to 37.0%, with a median of 19.5% (95% confidence interval, 17.3%-20.9%). In conclusion, compared with intermittent drug exposure, continuous exposure might select better minor drug-resistant clones when creating cell lines resistant to molecular-targeted drugs.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/genética , Mutação com Ganho de Função/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Adenocarcinoma/genética , Antineoplásicos/uso terapêutico , Apoptose , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Esquema de Medicação , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/antagonistas & inibidores , Gefitinibe , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Inibidores de Proteínas Quinases/uso terapêutico , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico
18.
Appl Biochem Biotechnol ; 180(4): 682-694, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27169587

RESUMO

Mesenchymal stem cells (MSCs) have shown considerable promise as an adaptable cell source for use in tissue engineering and other therapeutic applications. The aims of this study were to develop methods to test the hypothesis that human MSCs could be differentiated using sound wave stimulation alone and to find the underlying mechanism. Human bone marrow (hBM)-MSCs were stimulated with sound waves (1 kHz, 81 dB) for 7 days and the expression of neural markers were analyzed. Sound waves induced neural differentiation of hBM-MSC at 1 kHz and 81 dB but not at 1 kHz and 100 dB. To determine the signaling pathways involved in the neural differentiation of hBM-MSCs by sound wave stimulation, we examined the Pyk2 and CREB phosphorylation. Sound wave induced an increase in the phosphorylation of Pyk2 and CREB at 45 min and 90 min, respectively, in hBM-MSCs. To find out the upstream activator of Pyk2, we examined the intracellular calcium source that was released by sound wave stimulation. When we used ryanodine as a ryanodine receptor antagonist, sound wave-induced calcium release was suppressed. Moreover, pre-treatment with a Pyk2 inhibitor, PF431396, prevented the phosphorylation of Pyk2 and suppressed sound wave-induced neural differentiation in hBM-MSCs. These results suggest that specific sound wave stimulation could be used as a neural differentiation inducer of hBM-MSCs.


Assuntos
Cálcio/metabolismo , Diferenciação Celular , Quinase 2 de Adesão Focal/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Neurônios/citologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Som , Sinalização do Cálcio/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Espaço Intracelular/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Modelos Biológicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Nifedipino/farmacologia , Fosforilação/efeitos dos fármacos
19.
ACS Appl Mater Interfaces ; 8(18): 11189-93, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27117229

RESUMO

We report the interface properties of atomic-layer-deposited Al2O3 thin films on ultraviolet/ozone (UV/O3)-treated multilayer MoS2 crystals. The formation of S-O bonds on MoS2 after low-power UV/O3 treatment increased the surface energy, allowing the subsequent deposition of uniform Al2O3 thin films. The capacitance-voltage measurement of Au-Al2O3-MoS2 metal oxide semiconductor capacitors indicated n-type MoS2 with an electron density of ∼10(17) cm(-3) and a minimum interface trap density of ∼10(11) cm(-2) eV(-1). These results demonstrate the possibility of forming a high-quality Al2O3-MoS2 interface by proper UV/O3 treatment, providing important implications for their integration into field-effect transistors.

20.
Nanoscale Res Lett ; 10(1): 388, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26439617

RESUMO

We report the largest-size thin films of uniform single-layer MoS2 on sapphire substrates grown by chemical vapor deposition based on the reaction of gaseous MoO3 and S evaporated from solid sources. The as-grown thin films of single-layer MoS2 were continuous and uniform in thickness for more than 4 cm without the existence of triangular-shaped MoS2 clusters. Compared to mechanically exfoliated crystals, the as-grown single-layer MoS2 thin films possessed consistent chemical valence states and crystal structure along with strong photoluminescence emission and optical absorbance at high energy. These results demonstrate that it is possible to scale up the growth of uniform single-layer MoS2 thin films, providing potentially important implications on realizing high-performance MoS2 devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA