Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(17): 5000-5013, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37428468

RESUMO

Positive feedback is key to producing alternative stable states and largely determines ecological resilience in response to external perturbations. Understanding the positive feedback mechanisms in macrophyte-dominated lakes is crucial for resilience-based management and restoration. Based on the field investigation of submerged macrophyte communities in 35 lakes in China, we found that morphological complexity (MC) and morphological plasticity (MP) are correlated with the stoichiometric homeostasis of phosphorus (HP ) and are related to ecosystem structure, functioning, and stability. We also found that the positive feedback strength of lakes dominated by macrophytes is biomass- and diversity-dependent. Eutrophication can decrease the community biomass by decreasing community MC, MP, and HP and the species diversity through low-light availability, ultimately decreasing the positive feedback strength and resilience of clear water states. We argue that functional traits and species diversity should be considered to build more resilient ecosystems in future changing environment scenarios.

2.
Front Plant Sci ; 15: 1375898, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38828221

RESUMO

Introduction: Water depth (WD) and snail abundance (SA) are two key factors affecting the growth of submersed aquatic plants in freshwater lake ecosystems. Changes in WD and SA drive changes in nutrients and other primary producers that may have direct or indirect effects on submersed plant growth, but which factor dominates the impact of both on aquatic plants has not been fully studied. Methods: To investigate the dominant factors that influence aquatic plant growth in plateau lakes, a one-year field study was conducted to study the growth of three dominant submersed macrophyte (i.e., Vallisneria natans, Potamogeton maackianus, and Potamogeton lucens) in Erhai Lake. Results: The results show that, the biomass of the three dominant plants, P.maackianus, is the highest, followed by P.lucens, and V.natans is the lowest. Meanwhile, periphyton and snails attached to P.maackianus are also the highest. Furthermore, WD had a positive effect on the biomass of two submersed macrophyte species of canopy-type P.maackianus and P.lucens, while it had a negative effect on rosette-type V.natans. Snail directly inhibited periphyton attached on V.natans and thereby increasing the biomass of aquatic plants, but the effect of snails on the biomass of the other two aquatic plants is not through inhibition of periphyton attached to their plants. Discussion: The dominant factors affecting the biomass of submersed macrophyte in Erhai Lake were determined, as well as the direct and indirect mechanisms of WD and snails on the biomass of dominant submersed macrophyte. Understanding the mechanisms that dominate aquatic plant change will have implications for lake management and restoration.

3.
Chemosphere ; 332: 138899, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37169089

RESUMO

Submerged macrophytes can improve water quality and buffer the effects of external nutrient loading, which helps to maintain a clear-water state in shallow lakes. We constructed 12 large enclosures with contrasting coverages (treatments) of submerged macrophytes (SMC) to elucidate their buffering capacity and resilience to nutrient pulses. We found that aquatic ecosystems with high SMC had higher buffering capacity and resilience, vice versa, i. e, the enclosures with high SMC quickly buffered the nutrient pulse and rebounded to clear-water state after a short stay in turbid-water state dominated by algae, while the treatments with low SMC could not fully buffer the pulse and rebound to clear-water state, and they slowly entered the transitional state after staying in turbid-water state. This means that the enclosures with high SMC had a better water quality than those with low SMC, i.e., the levels of nutrients and Chl-a were lower in the treatments with high plant coverage. In addition, plant coverage had a significantly positive buffering effect against nitrogen and phosphorus pulses, i.e., the nutrient concentrations in the treatments with high SMC took shorter time to return to the pre-pulse level. Overall, our results evidenced that the higher that the SMCs is, the better is the water quality and buffering capacity against nutrient pulses, i.e. the more stable is the clear-water state. However, low SMC may not be able to resist the impact of such strong nutrient pulse. Our results provide reference and guidance for water pollution control and water ecological restoration.


Assuntos
Ecossistema , Lagos , Plantas , Nutrientes , Fósforo
4.
Environ Pollut ; 294: 118593, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34864100

RESUMO

Periphyton is considered important for removal of organic pollutants from water bodies, but knowledge of the impacts of antibiotics on the community structure and ecological function of waterbodies remains limited. In this study, the effects of oxytetracycline hydrochloride (OTC) on the communities of photoautotrophic epilithon and epipelon and its effect on nitrogen and phosphorus concentrations in the water column were studied in a 12-day mesocosm experiment. The dynamics of nitrogen and phosphorus concentrations in the epipelon and epilithon experiment showed similar patterns. The concentrations of total nitrogen, dissolved total nitrogen, ammonium nitrogen, total phosphorus and dissolved total phosphorus in the water column increased rapidly during the initial days of exposure, after which a downward trend occurred. In the epilithon experiment, we found that the photosynthesis (Fv/Fm) and biomass of epilithon were significantly (P < 0.05) stimulated in the low concentration group. Contrarily, growth and photosynthesis (Fv/Fm) were significantly (P < 0.05) reduced in the medium and high concentration group. We further found that the photosynthetic efficiency of photoautotrophic epilithon was negatively correlated with the concentrations of nitrogen and phosphorus in the water column (P < 0.05). Principal coordinate analysis (PCoA) showed that the communities of epilithic algae in the control group and in the low concentration group were significantly (P < 0.05) different from that of the high concentration group during the initial 4 days. After 8 days' exposure, all groups tended to be similar, indicating that epilithon showed rapid adaptability and/or resilience. Similar results were found for the relative abundance of some epilithic algae. Our findings indicate that the biofilm system has strong tolerance and adaptability to OTC as it recovered fast after an initial suppression, thus showing the important role of periphyton in maintaining the dynamic balance of nutrients with other processes in aquatic ecosystems.


Assuntos
Oxitetraciclina , Perifíton , Poluentes Químicos da Água , Ecossistema , Nitrogênio/análise , Oxitetraciclina/metabolismo , Fósforo/análise , Poluentes Químicos da Água/metabolismo
5.
Sci Total Environ ; 795: 148747, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34243006

RESUMO

Algal dominance between phytoplankton and epiphyton plays an essential role in predicting shallow lake shifts between clear-water and turbid-water states. However, compared to resources competition, studies on algal life-form shifts between phytoplankton and epiphyton have traditionally received less interest, as few studies have focused on algal communities in both habitats concurrently. We conducted a 4 × 3 factorial design microcosm experiment to explore the mutual feedback relationship between phytoplankton and epiphyton. The initial algal life-form (epiphytic algae and phytoplanktonic algae alone or together) and nutrients enrichment (ambient, enrichment with N and P alone or together) were manipulated. After 28 days of incubation, the results suggested that the nutrient effects on the phytoplankton and epiphyton communities differed among the three different initial algal life-forms. A significant competitive advantage of phytoplankton was found even in treatments containing only epiphytic algae as the initial algal community. The contribution of nutrient enrichment to phytoplankton abundance (13%) was similar to that of epiphyton abundance (11%). In the mutual influence between two algal communities, epiphyton was likely to be a beneficiary as the phytoplankton community contributed 15% of the variance in epiphyton abundance. In addition, significant algal life-form shifts between phytoplankton and epiphyton only occurred in treatments containing one algal life-form, but not in treatments containing both algal life-forms at the beginning of the experiment. Our results emphasized the competitive advantage of phytoplankton in utilizing nutrient resources in the water column of shallow lakes. Moreover, we demonstrated that algal life-form shift was an adaptive behavior closely correlated with environmental variation. These results will provide broader insights to explore algal succession between phytoplankton and epiphyton in shallow lakes. To better understand the mutual influence mechanism between two algal life-forms under different nutrient conditions, research on multiple short time-scales based on algal migration is needed in the future.


Assuntos
Lagos , Fitoplâncton , Biomassa , Ecossistema , Nutrientes , Fósforo , Plantas
6.
Front Plant Sci ; 10: 442, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31031783

RESUMO

Leaf soluble carbohydrates (SC), free amino acids (FAA), starch, total phenolics (TOPH), carbon (C), and nitrogen (N) stoichiometry of 24 aquatic macrophyte species were studied at 52 selected sites in eastern, 31 sites in southwestern and 6 sites in western China, including 12 submerged, 6 floating-leaved, 4 emergent and 2 free-floating macrophytes. The leaf stoichiometric characteristics differed significantly among the plant species of the four different life forms, the lowest C content occurring in submerged macrophytes and the highest N content in free-floating macrophytes. Overall, though the variance explained by the linear regression models was low, the C and N contents decreased toward the northern latitudes, the C content and the C:N ratios increased with increasing altitude. Multiple regressions revealed that the stoichiometric characteristics of submerged macrophytes varied significantly across the large spatial and climatic gradients and among the species studied. For floating-leaved and emergent macrophytes, no correlation between climate factors and SC, FAA, starch, TOPH, C, and N contents and C:N ratio was observed. For free-floating macrophytes, the TOPH content was markedly positively correlated with latitude and altitude. We conclude that the C and N contents related more closely to latitude, altitude or mean annual air temperature than did the C and N metabolic indicators for the submerged macrophytes, while the relationships with the metabolic indicators turned out to be insignificant for most species of the other life forms. The results helped us to identify species with significant physiological plasticity across geographic and climatic gradients in China, and such information is useful when conducting restoration of lost aquatic plants in different climate regions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA