Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 107(17): 7799-804, 2010 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-20385801

RESUMO

Previously we showed that the ~2% of fetal liver cells reactive with an anti-CD3epsilon monoclonal antibody support ex vivo expansion of both fetal liver and bone marrow hematopoietic stem cells (HSCs); these cells express two proteins important for HSC ex vivo expansion, IGF2, and angiopoietin-like 3. Here we show that these cells do not express any CD3 protein and are not T cells; rather, we purified these HSC-supportive stromal cells based on the surface phenotype of SCF(+)DLK(+). Competitive repopulating experiments show that SCF(+)DLK(+) cells support the maintenance of HSCs in ex vivo culture. These are the principal fetal liver cells that express not only angiopoietin-like 3 and IGF2, but also SCF and thrombopoietin, two other growth factors important for HSC expansion. They are also the principal fetal liver cells that express CXCL12, a factor required for HSC homing, and also alpha-fetoprotein (AFP), indicating that they are fetal hepatic stem or progenitor cells. Immunocytochemistry shows that >93% of the SCF(+) cells express DLK and Angptl3, and a portion of SCF(+) cells also expresses CXCL12. Thus SCF(+)DLK(+) cells are a highly homogenous population that express a complete set of factors for HSC expansion and are likely the primary stromal cells that support HSC expansion in the fetal liver.


Assuntos
Feto/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Fígado/citologia , Fígado/embriologia , Proteína 3 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina , Angiopoietinas/metabolismo , Animais , Quimiocina CXCL12/metabolismo , Feto/citologia , Citometria de Fluxo , Células-Tronco Hematopoéticas/citologia , Imuno-Histoquímica , Fator de Crescimento Insulin-Like II/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células Estromais/citologia , Células Estromais/metabolismo , alfa-Fetoproteínas/metabolismo
2.
IUBMB Life ; 62(7): 492-6, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20306512

RESUMO

This article reviews the regulation of production of red blood cells at several levels: (1) the ability of erythropoietin and adhesion to a fibronectin matrix to stimulate the rapid production of red cells by inducing terminal proliferation and differentiation of committed erythroid CFU-E progenitors; (2) the regulated expansion of the pool of earlier BFU-E erythroid progenitors by glucocorticoids and other factors that occurs during chronic anemia or inflammation; and (3) the expansion of thehematopoietic cell pool to produce more progenitors of all hematopoietic lineages.


Assuntos
Eritropoese , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/fisiologia , Animais , Diferenciação Celular , Proliferação de Células , Eritroblastos , Células Precursoras Eritroides/fisiologia , Eritropoese/efeitos dos fármacos , Eritropoetina/fisiologia , Glucocorticoides/fisiologia , Humanos , Fator de Células-Tronco/fisiologia
3.
Mol Syst Biol ; 4: 212, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18682702

RESUMO

The yeast transcription factor Ste12 controls both mating and filamentation pathways. Upon pheromone induction, the mitogen-activated protein kinases, Fus3 and Kss1, activate Ste12 by relieving the repression of two functionally redundant Ste12 inhibitors, Dig1 and Dig2. Mating genes are controlled by the Ste12/Dig1/Dig2 complex through Ste12-binding sites, whereas filamentation genes are regulated by the Tec1/Ste12/Dig1 complex through Tec1-binding sites. The two Ste12 complexes are mutually exclusive. During pheromone response, Tec1 is degraded upon phosphorylation by Fus3, preventing cross-activation of the filamentation pathway. Here, we show that a stable Tec1 also impairs the induction of mating genes. A mathematical model is developed to capture the dynamic formation of the two Ste12 complexes and their interactions with pathway-specific promoters. By model simulations and experimentation, we show that excess Tec1 can impair the mating transcriptional output because of its ability to sequester Ste12, and because of a novel function of Dig2 for the transcription of mating genes. We suggest that Fus3-triggered Tec1 degradation is an important part of the transcriptional induction of mating genes during the pheromone response.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Atrativos Sexuais/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Simulação por Computador , Proteínas de Ligação a DNA/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Modelos Genéticos , Mutação , Fosforilação , Regiões Promotoras Genéticas , Reprodução , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Tempo , Fatores de Transcrição/genética
4.
Mol Cell Biol ; 26(13): 4794-805, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16782869

RESUMO

The Saccharomyces cerevisiae transcription factor Ste12 controls two distinct developmental programs of mating and filamentation. Ste12 activity is regulated by Fus3 and Kss1 mitogen-activated protein kinases through two Ste12 inhibitors, Dig1 and Dig2. Mating genes are regulated by Ste12 through Ste12 binding sites (pheromone response elements [PREs]), whereas filamentation genes are supposedly regulated by the cooperative binding of Ste12 and Tec1 on a PRE adjacent to a Tec1-binding site (TCS), termed filamentous responsive element (FRE). However, most filamentation genes do not contain an FRE; instead, they all have a TCS. By immunoprecipitation, we show that Ste12 forms two distinct complexes, Ste12/Dig1/Dig2 and Tec1/Ste12/Dig1, both in vivo and in vitro. The two complexes are formed by the competitive binding of Tec1 and Dig2 with Ste12, as Tec1 can compete off Dig2 from Ste12 in vitro and in vivo. In the Tec1/Ste12/Dig1 complex, Tec1 binds to the N terminus of Ste12 and to Dig1 indirectly through Ste12. Tec1 has low basal activity, and its transcriptional activation is provided by the associated Ste12, which is under Dig1 inhibition. Filamentation genes are bound by the Tec1/Ste12/Dig1 complex, whereas mating genes are occupied by mostly Ste12/Dig1/Dig2 with some Tec1/Ste12/Dig1. We suggest that Tec1 tethers Ste12 to TCS elements upstream of filamentation genes and defines the filamentation genes as a subset of Ste12-regulated genes.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Regulação Fúngica da Expressão Gênica , Genes Fúngicos Tipo Acasalamento , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Ligação Competitiva , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Regiões Promotoras Genéticas , Elementos de Resposta , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Transcrição Gênica
5.
Medchemcomm ; 8(4): 767-770, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30108795

RESUMO

Histone deacetylases (HDACs) regulate diverse cellular processes, and are promising targets for a number of diseases. Here we describe the design and utilization of a largazole-based chemical probe to quantitatively measure the intracellular occupancy of HDAC1 and HDAC2 by dacinostat. Surprisingly, the probe was unable to enrich HDAC3 despite its nanomolar potency in a biochemical assay, further proving the necessity of cell-based target occupancy assays to understand compound potency in physiologically-relevant settings. This occupancy assay has the potential to aid the development of novel HDAC1/2 inhibitors in drug discovery.

6.
J Control Release ; 103(3): 565-75, 2005 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-15820404

RESUMO

Biodegradable poly (lactic-co-glycolic acid) (PLGA), D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS) and/or polyethylene glycol (PEG) were combined as pharmaceutical excipient to fabricate microparticles containing sparingly soluble drug paclitaxel by spray-drying technique with successful achievement. The effect of formulation variety on particle morphology, surface composition, thermal property, drug entrapped capability, and drug release profile was investigated. The result indicated that the use of the appropriate mixtures of PLGA, TPGS and/or PEG produced paclitaxel-loaded microparticles characterised by acceptable pharmaceutical properties. Atomic force microcopy (AFM) and scanning electron microscopy (SEM) showed that the produced microparticles were spherical in shape with dimples or pores. The particle size ranged from 0.88 to 2.44 microm with narrow distribution. The combination of TPGS and PEG in the formulation resulted in a narrow particle size distribution in general although the influence of the formulation on the particle size was not significant. Differential scanning calorimetry (DSC) study implied that all those components in consideration were compatible well in the blend formulation systems. The paclitaxel entrapped in the particles existed in an amorphous or disordered-crystalline status in the matrices and was independent of the PLGA/TPGS/PEG ratio. X-ray photoelectron spectroscope (XPS) analysis revealed that after incorporation the particle's surface was dominated with PLGA due to its hydrophobic property. The formulation variety had an important impact on the drug release that was reduced with the presence of large fraction of TPGS resulting from a strong hydrophobic interaction between various matrix materials and the drug inside the particle. A zero order release could be yielded by optimising the ratio of PLGA/TPGS/PEG. The combination of PLGA/TPGS/PEG as safe pharmaceutical excipient to formulate particulate delivery system is beneficial in improving the pharmaceutical properties for further powder dosage application.


Assuntos
Antineoplásicos/administração & dosagem , Vitamina E/análogos & derivados , Antineoplásicos/farmacocinética , Varredura Diferencial de Calorimetria , Fenômenos Químicos , Química Farmacêutica , Físico-Química , Cromatografia Líquida de Alta Pressão , Composição de Medicamentos , Excipientes , Ácido Láctico , Tamanho da Partícula , Polietilenoglicóis , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Polímeros , Pós , Solubilidade , Propriedades de Superfície
7.
Exp Hematol ; 41(5): 479-490.e4, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23415675

RESUMO

We have developed a coculture system that establishes DLK(+) fetal hepatic progenitors as the authentic supportive cells for expansion of hematopoietic stem (HSCs) and progenitor cells. In 1-week cultures supplemented with serum and supportive cytokines, both cocultured DLK(+) fetal hepatic progenitors and their conditioned medium supported rapid expansion of hematopoietic progenitors and a small increase in HSC numbers. In 2- and 3-week cultures DLK(+) cells, but not their conditioned medium, continuously and significantly (>20-fold) expanded both hematopoietic stem and progenitor cells. Physical contact between HSCs and DLK(+) cells was crucial to maintaining this long-term expansion. Similar HSC expansion (approximately sevenfold) was achieved in cocultures using a serum-free, low cytokine- containing medium. In contrast, DLK(-) cells are incapable of expanding hematopoietic cells, demonstrating that hepatic progenitors are the principle supportive cells for HSC expansion in the fetal liver.


Assuntos
Técnicas de Cultura de Células/métodos , Proliferação de Células , Células-Tronco Hematopoéticas/citologia , Células-Tronco/citologia , Animais , Proteínas de Ligação ao Cálcio , Adesão Celular/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Meios de Cultivo Condicionados/farmacologia , Meios de Cultura Livres de Soro/farmacologia , Citocinas/farmacologia , Feto , Citometria de Fluxo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fígado/citologia , Fígado/embriologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Fatores de Tempo
8.
Cell Stem Cell ; 7(4): 427-8, 2010 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-20887947

RESUMO

A recent Science paper reported a purine derivative that expands human cord blood hematopoietic stem cells in culture (Boitano et al., 2010) by antagonizing the aryl hydrocarbon receptor. Major problems need to be overcome before ex vivo HSC expansion can be used clinically.


Assuntos
Sangue Fetal/citologia , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/citologia , Técnicas de Cultura de Células/métodos , Proliferação de Células , Humanos , Purinas/metabolismo
9.
Proc Natl Acad Sci U S A ; 103(34): 12813-8, 2006 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-16905649

RESUMO

Candida albicans, a commensal organism and a pathogen of humans, can switch stochastically between a white phase and an opaque phase without an intermediate phase. The white and opaque phases have distinct cell shapes and gene expression programs. Once switched, each phase is stable for many cell divisions. White-opaque switching is under a1-alpha2 repression and therefore only happens in a or alpha cells. Mechanisms that control the switching are unknown. Here, we identify Wor1 (white-opaque regulator 1) as a master regulator of white-opaque switching. The deletion of WOR1 blocks opaque cell formation. The ectopic expression of WOR1 converts all cells to stable opaque cells in a or alpha cells. In addition, the ectopic expression of WOR1 in a/alpha cells is sufficient to induce opaque cell formation. Importantly, WOR1 expression displays an all-or-none pattern. It is undetectable in white cells, and it is highly expressed in opaque cells. The ectopic expression of Wor1 induces the transcription of WOR1 from the WOR1 locus, which correlates with the switch to opaque phase. We present genetic evidence for feedback regulation of WOR1 transcription. The feedback regulation explains the bistable and stochastic nature of white-opaque switching.


Assuntos
Candida albicans/citologia , Candida albicans/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Genes de Troca/genética , Sequência de Aminoácidos , Candida albicans/metabolismo , Ciclo Celular , Sequência Conservada , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Dados de Sequência Molecular , Mutação/genética , Regiões Promotoras Genéticas/genética , Alinhamento de Sequência
10.
Cell ; 119(7): 981-90, 2004 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-15620356

RESUMO

Signaling specificity is fundamental for parallel mitogen-activated protein kinase (MAPK) cascades that control growth and differentiation in response to different stimuli. In Saccharomyces cerevisiae, components of the pheromone-responsive MAPK cascade activate Fus3 and Kss1 MAPKs to induce mating and Kss1 to promote filamentation. Active Fus3 is required to prevent the activation of the filamentation program during pheromone response. How Fus3 prevents the crossactivation is not clear. Here we show that Tec1, a cofactor of Ste12 for the expression of filamentation genes, is rapidly degraded during pheromone response. Fus3 but not Kss1 induces Tec1 ubiquination and degradation through the SCFCdc4 ubiquitin ligase. T273 in a predicted high-affinity Cdc4 binding motif is phosphorylated by Fus3 both in vitro and in vivo. Tec1T273V blocks Tec1 ubiquitination and degradation and allows the induction of filamentation genes in response to pheromone. Thus, Fus3 inhibits filamentous growth during mating by degrading Tec1.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas F-Box/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Peptídeos/farmacologia , Feromônios/farmacologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas F-Box/genética , Regulação Fúngica da Expressão Gênica , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fator de Acasalamento , Proteínas Quinases Ativadas por Mitógeno/genética , Mutação , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/genética , Treonina/genética , Treonina/metabolismo , Fatores de Transcrição/genética , Ativação Transcricional/efeitos dos fármacos , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA