Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Genomics ; 112(6): 5044-5054, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32920121

RESUMO

Genomics-led researches are engaged in tracing virus expression pattern, and induced immune responses in human to develop effective vaccine against COVID-19. In this study, targeted expression profiling and differential gene expression analysis of major histocompatibility complexes and innate immune system genes were performed through SARS-CoV-2 infected RNA-seq data of human cell line, and virus transcriptome was generated for T-and B-cell epitope prediction. Docking studies of epitopes with MHC and B-cell receptors were performed to identify potential T-and B-cell epitopes. Transcriptome analysis revealed the specific multiple allele expressions in cell line, genes for elicited induce immune response, and virus gene expression. Proposed T- and B-cell epitopes have high potential to elicit equivalent immune responses caused by SARS-CoV-2 infection which can be useful to provide links between elicited immune response and virus gene expression. This study will facilitate in vitro and in vivo vaccine related research studies in disease control.


Assuntos
Vacinas contra COVID-19 , COVID-19/imunologia , Epitopos Imunodominantes/genética , SARS-CoV-2/imunologia , Linfócitos B/imunologia , COVID-19/genética , Biologia Computacional , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Perfilação da Expressão Gênica , Genes MHC Classe I , Genes MHC da Classe II , Humanos , Imunidade Inata/genética , Epitopos Imunodominantes/química , Epitopos Imunodominantes/metabolismo , Simulação de Acoplamento Molecular , SARS-CoV-2/genética
2.
Artigo em Inglês | MEDLINE | ID: mdl-34335877

RESUMO

Hollow particles have been extensively used in bioanalytical and biomedical applications for almost two decades due to their unique and tunable optoelectronic properties as well as their significantly high loading capacities. These intrinsic properties led them to be used in various bioimaging applications as contrast agents, controlled delivery (i.e. drugs, nucleic acids and other biomolecules) platforms and photon-triggered therapies (e.g. photothermal and photodynamic therapies). Since recent studies showed that imaging-guided targeted therapeutics have higher success rates, multimodal theranostic platforms (combination of one or more therapy and diagnosis modality) have been employed more often and hollow particles (i.e. nanoshells) have been one of the most efficient candidates to be used in multiple-purpose platforms, owing to their intrinsic properties that enable synergistic multimodal performance. In this review, recent advances in the applications of such hollow particles fabricated with various routes (either inorganic or organic based) were summarized to delineate strategies for tuning their properties for more efficient biomedical performance by overcoming common biological barriers. This review will pave the ways for expedited progress in design of next generation of hollow particles for clinical applications.

3.
Biomater Sci ; 12(7): 1801-1821, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38407241

RESUMO

The degeneration of neurons due to the accumulation of misfolded amyloid aggregates in the central nervous system (CNS) is a fundamental neuropathology of Alzheimer's disease (AD). It is believed that dislodging/clearing these amyloid aggregates from the neuronal tissues could lead to a potential cure for AD. In the present work, we explored biocompatible polydopamine-coated piezoelectric polyvinylidene fluoride (DPVDF) nanospheres as acoustic stimulus-triggered anti-fibrillating and anti-amyloid agents. The nanospheres were tested against two model amyloidogenic peptides, including the reductionist model-based amyloidogenic dipeptide, diphenylalanine, and the amyloid polypeptide, amyloid beta (Aß42). Our results revealed that DPVDF nanospheres could effectively disassemble the model peptide-derived amyloid fibrils under suitable acoustic stimulation. In vitro studies also showed that the stimulus activated DPVDF nanospheres could efficiently alleviate the neurotoxicity of FF fibrils as exemplified in neuroblastoma, SHSY5Y, cells. Studies carried out in animal models further validated that the nanospheres could dislodge amyloid aggregates in vivo and also help the animals regain their cognitive behavior. Thus, these acoustic stimuli-activated nanospheres could serve as a novel class of disease-modifying nanomaterials for non-invasive electro-chemotherapy of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Nanosferas , Animais , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/uso terapêutico , Fragmentos de Peptídeos/uso terapêutico , Amiloide , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA