Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Mol Cell ; 64(4): 746-759, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27863227

RESUMO

Excitation-transcription coupling, linking stimulation at the cell surface to changes in nuclear gene expression, is conserved throughout eukaryotes. How closely related coexpressed transcription factors are differentially activated remains unclear. Here, we show that two Ca2+-dependent transcription factor isoforms, NFAT1 and NFAT4, require distinct sub-cellular InsP3 and Ca2+ signals for physiologically sustained activation. NFAT1 is stimulated by sub-plasmalemmal Ca2+ microdomains, whereas NFAT4 additionally requires Ca2+ mobilization from the inner nuclear envelope by nuclear InsP3 receptors. NFAT1 is rephosphorylated (deactivated) more slowly than NFAT4 in both cytoplasm and nucleus, enabling a more prolonged activation phase. Oscillations in cytoplasmic Ca2+, long considered the physiological form of Ca2+ signaling, play no role in activating either NFAT protein. Instead, effective sustained physiological activation of NFAT4 is tightly linked to oscillations in nuclear Ca2+. Our results show how gene expression can be controlled by coincident yet geographically distinct Ca2+ signals, generated by a freely diffusible InsP3 message.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Fosfatos de Inositol/metabolismo , Fatores de Transcrição NFATC/genética , Proteínas Recombinantes de Fusão/genética , Animais , Basófilos/citologia , Basófilos/efeitos dos fármacos , Basófilos/metabolismo , Brônquios/citologia , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Leucotrieno C4/farmacologia , Fatores de Transcrição NFATC/metabolismo , Transporte Proteico , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Tapsigargina/farmacologia , Transcrição Gênica
2.
PLoS Comput Biol ; 15(6): e1007030, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31194728

RESUMO

Prolactin is a major hormone product of the pituitary gland, the central endocrine regulator. Despite its physiological importance, the cell-level mechanisms of prolactin production are not well understood. Having significantly improved the resolution of real-time-single-cell-GFP-imaging, the authors recently revealed that prolactin gene transcription is highly dynamic and stochastic yet shows space-time coordination in an intact tissue slice. However, it still remains an open question as to what kind of cellular communication mediates the observed space-time organization. To determine the type of interaction between cells we developed a statistical model. The degree of similarity between two expression time series was studied in terms of two distance measures, Euclidean and geodesic, the latter being a network-theoretic distance defined to be the minimal number of edges between nodes, and this was used to discriminate between juxtacrine from paracrine signalling. The analysis presented here suggests that juxtacrine signalling dominates. To further determine whether the coupling is coordinating transcription or post-transcriptional activities we used stochastic switch modelling to infer the transcriptional profiles of cells and estimated their similarity measures to deduce that their spatial cellular coordination involves coupling of transcription via juxtacrine signalling. We developed a computational model that involves an inter-cell juxtacrine coupling, yielding simulation results that show space-time coordination in the transcription level that is in agreement with the above analysis. The developed model is expected to serve as the prototype for the further study of tissue-level organised gene expression for epigenetically regulated genes, such as prolactin.


Assuntos
Comunicação Celular/genética , Modelos Biológicos , Comunicação Parácrina/genética , Animais , Comunicação Celular/fisiologia , Biologia Computacional , Regulação da Expressão Gênica/genética , Humanos , Masculino , Comunicação Parácrina/fisiologia , Hipófise/metabolismo , Prolactina/genética , Prolactina/metabolismo , Ratos , Ratos Transgênicos , Processos Estocásticos
3.
Cereb Cortex ; 29(5): 2148-2159, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29850799

RESUMO

Synaptosomal associated protein 25 kDa (SNAP25) is an essential component of the SNARE complex regulating synaptic vesicle fusion. SNAP25 deficiency has been implicated in a variety of cognitive disorders. We ablated SNAP25 from selected neuronal populations by generating a transgenic mouse (B6-Snap25tm3mcw (Snap25-flox)) with LoxP sites flanking exon5a/5b. In the presence of Cre-recombinase, Snap25-flox is recombined to a truncated transcript. Evoked synaptic vesicle release is severely reduced in Snap25 conditional knockout (cKO) neurons as shown by live cell imaging of synaptic vesicle fusion and whole cell patch clamp recordings in cultured hippocampal neurons. We studied Snap25 cKO in subsets of cortical projection neurons in vivo (L5-Rbp4-Cre; L6-Ntsr1-Cre; L6b-Drd1a-Cre). cKO neurons develop normal axonal projections, but axons are not maintained appropriately, showing signs of swelling, fragmentation and eventually complete absence. Onset and progression of degeneration are dependent on the neuron type, with L5 cells showing the earliest and most severe axonal loss. Ultrastructural examination revealed that cKO neurites contain autophagosome/lysosome-like structures. Markers of inflammation such as Iba1 and lipofuscin are increased only in adult cKO cortex. Snap25 cKO can provide a model to study genetic interactions with environmental influences in several disorders.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Neurônios/patologia , Neurônios/fisiologia , Proteína 25 Associada a Sinaptossoma/fisiologia , Animais , Axônios/patologia , Axônios/fisiologia , Axônios/ultraestrutura , Encéfalo/ultraestrutura , Feminino , Masculino , Camundongos Knockout , Neurônios/ultraestrutura , Transmissão Sináptica , Vesículas Sinápticas
4.
Proc Natl Acad Sci U S A ; 112(10): 3164-9, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25713362

RESUMO

Iron is essential to the cell. Both iron deficiency and overload impinge negatively on cardiac health. Thus, effective iron homeostasis is important for cardiac function. Ferroportin (FPN), the only known mammalian iron-exporting protein, plays an essential role in iron homeostasis at the systemic level. It increases systemic iron availability by releasing iron from the cells of the duodenum, spleen, and liver, the sites of iron absorption, recycling, and storage respectively. However, FPN is also found in tissues with no known role in systemic iron handling, such as the heart, where its function remains unknown. To explore this function, we generated mice with a cardiomyocyte-specific deletion of Fpn. We show that these animals have severely impaired cardiac function, with a median survival of 22 wk, despite otherwise unaltered systemic iron status. We then compared their phenotype with that of ubiquitous hepcidin knockouts, a recognized model of the iron-loading disease hemochromatosis. The phenotype of the hepcidin knockouts was far milder, with normal survival up to 12 mo, despite far greater iron loading in the hearts. Histological examination demonstrated that, although cardiac iron accumulates within the cardiomyocytes of Fpn knockouts, it accumulates predominantly in other cell types in the hepcidin knockouts. We conclude, first, that cardiomyocyte FPN is essential for intracellular iron homeostasis and, second, that the site of deposition of iron within the heart determines the severity with which it affects cardiac function. Both findings have significant implications for the assessment and treatment of cardiac complications of iron dysregulation.


Assuntos
Proteínas de Transporte de Cátions/fisiologia , Coração/fisiologia , Homeostase , Ferro/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
5.
Am J Physiol Renal Physiol ; 312(4): F778-F790, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28179256

RESUMO

Zebrafish provide an excellent model in which to assess the role of the renin-angiotensin system in renal development, injury, and repair. In contrast to mammals, zebrafish kidney organogenesis terminates with the mesonephros. Despite this, the basic functional structure of the nephron is conserved across vertebrates. The relevance of teleosts for studies relating to the regulation of the renin-angiotensin system was established by assessing the phenotype and functional regulation of renin-expressing cells in zebrafish. Transgenic fluorescent reporters for renin (ren), smooth muscle actin (acta2), and platelet-derived growth factor receptor-beta (pdgfrb) were studied to determine the phenotype and secretory ultrastructure of perivascular renin-expressing cells. Whole kidney ren transcription responded to altered salinity, pharmacological renin-angiotensin system inhibition, and renal injury. Mesonephric ren-expressing cells occupied niches at the preglomerular arteries and afferent arterioles, forming intermittent epithelioid-like multicellular clusters exhibiting a granular secretory ultrastructure. In contrast, renin cells of the efferent arterioles were thin bodied and lacked secretory granules. Renin cells expressed the perivascular cell markers acta2 and pdgfrb Transcriptional responses of ren to physiological challenge support the presence of a functional renin-angiotensin system and are consistent with the production of active renin. The reparative capability of the zebrafish kidney was harnessed to demonstrate that ren transcription is a marker for renal injury and repair. Our studies demonstrate substantive conservation of renin regulation across vertebrates, and ultrastructural studies of renin cells reveal at least two distinct morphologies of mesonephric perivascular ren-expressing cells.


Assuntos
Forma Celular , Sistema Renina-Angiotensina , Renina/metabolismo , Ductos Mesonéfricos/enzimologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Animais Geneticamente Modificados , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microscopia de Fluorescência , Miócitos de Músculo Liso/metabolismo , Pericitos/metabolismo , Fenótipo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Renina/genética , Transcrição Gênica , Ductos Mesonéfricos/ultraestrutura , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
6.
Dev Biol ; 401(2): 287-98, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25557622

RESUMO

Maintaining follicle integrity during development, whereby each follicle is a functional unit containing a single oocyte, is essential for the generation of healthy oocytes. However, the mechanisms that regulate this critical function have not been determined. In this paper we investigate the role of the oocyte in maintaining follicle development. To investigate this role, we use a mouse model with oocyte-specific deletion of C1galt1 which is required for the generation of core 1-derived O-glycans. The loss of oocyte-generated O-glycans results in the joining of follicles and the generation of Multiple-Oocyte Follicles (MOFs). The aim was to determine how Mutant follicle development is modified thus enabling follicles to join. Extracellular matrix and follicle permeability were studied using histology, immunohistochemistry and electron microscopy (EM). In ovaries containing Mutant Oocytes, the Follicle basal lamina (FBL) is altered both functionally and structurally from the primary stage onwards with Mutant follicles possessing unexpectedly thicker FBL. In Mutant ovaries, the theca cell layer is also modified with intermingling of theca between adjacent follicles. MOF function was analysed but despite increased numbers of preantral MOFs in Mutants, these do not reach the preovulatory stage after gonadotrophin stimulation. We propose a model describing how oocyte initiated changes in FBL and theca cells result in follicles joining. These data reveal new and important roles for the oocyte in follicle development and follicle integrity.


Assuntos
Membrana Basal/embriologia , Galactosiltransferases/genética , Oócitos/metabolismo , Folículo Ovariano/embriologia , Células Tecais/citologia , Animais , Membrana Basal/citologia , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Feminino , Glicoproteínas/metabolismo , Gonadotropinas/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Folículo Ovariano/citologia , Permeabilidade , Polissacarídeos/genética
7.
Kidney Int ; 90(6): 1251-1261, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27678158

RESUMO

Pericytes, perivascular cells embedded in the microvascular wall, are crucial for vascular homeostasis. These cells also play diverse roles in tissue development and regeneration as multi-lineage progenitors, immunomodulatory cells and as sources of trophic factors. Here, we establish that pericytes are renin producing cells in the human kidney. Renin was localized by immunohistochemistry in CD146 and NG2 expressing pericytes, surrounding juxtaglomerular and afferent arterioles. Similar to pericytes from other organs, CD146+CD34-CD45-CD56- renal fetal pericytes, sorted by flow cytometry, exhibited tri-lineage mesodermal differentiation potential in vitro. Additionally, renin expression was triggered in cultured kidney pericytes by cyclic AMP as confirmed by immuno-electron microscopy, and secretion of enzymatically functional renin, capable of generating angiotensin I. Pericytes derived from second trimester human placenta also expressed renin in an inducible fashion although the renin activity was much lower than in renal pericytes. Thus, our results confirm and extend the recently discovered developmental plasticity of microvascular pericytes, and may open new perspectives to the therapeutic regulation of the renin-angiotensin system.


Assuntos
Rim/ultraestrutura , Pericitos/metabolismo , Renina/metabolismo , Humanos , Rim/embriologia , Células-Tronco Mesenquimais , Cultura Primária de Células
8.
Proc Natl Acad Sci U S A ; 110(3): 832-41, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23277546

RESUMO

The blood-brain barrier (BBB), a critical guardian of communication between the periphery and the brain, is frequently compromised in neurological diseases such as multiple sclerosis (MS), resulting in the inappropriate passage of molecules and leukocytes into the brain. Here we show that the glucocorticoid anti-inflammatory messenger annexin A1 (ANXA1) is expressed in brain microvascular endothelial cells, where it regulates BBB integrity. In particular, ANXA1(-/-) mice exhibit significantly increased BBB permeability as a result of disrupted interendothelial cell tight junctions, essentially related to changes in the actin cytoskeleton, which stabilizes tight and adherens junctions. This situation is reminiscent of early MS pathology, a relationship confirmed by our detection of a selective loss of ANXA1 in the plasma and cerebrovascular endothelium of patients with MS. Importantly, this loss is swiftly restored by i.v. administration of human recombinant ANXA1. Analysis in vitro confirms that treatment of cerebrovascular endothelial cells with recombinant ANXA1 restores cell polarity, cytoskeleton integrity, and paracellular permeability through inhibition of the small G protein RhoA. We thus propose ANXA1 as a critical physiological regulator of BBB integrity and suggest it may have utility in the treatment of MS, correcting BBB function and hence ameliorating disease.


Assuntos
Anexina A1/fisiologia , Barreira Hematoencefálica/fisiologia , Citoesqueleto de Actina/fisiologia , Junções Aderentes/patologia , Junções Aderentes/fisiologia , Adulto , Idoso , Animais , Anexina A1/antagonistas & inibidores , Anexina A1/deficiência , Anexina A1/genética , Anexina A1/farmacologia , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/fisiopatologia , Permeabilidade Capilar/fisiologia , Linhagem Celular , Células Endoteliais/patologia , Células Endoteliais/fisiologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microvasos/patologia , Microvasos/fisiopatologia , Pessoa de Meia-Idade , Modelos Neurológicos , Esclerose Múltipla/patologia , Esclerose Múltipla/fisiopatologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Proteínas de Junções Íntimas/fisiologia , Proteína rhoA de Ligação ao GTP/metabolismo
9.
Commun Biol ; 5(1): 492, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606540

RESUMO

Hibernation involves prolonged intervals of profound metabolic suppression periodically interrupted by brief arousals to euthermy, the function of which is unknown. Annual cycles in mammals are timed by a photoperiodically-regulated thyroid-hormone-dependent mechanism in hypothalamic tanycytes, driven by thyrotropin (TSH) in the pars tuberalis (PT), which regulates local TH-converting deiodinases and triggers remodeling of neuroendocrine pathways. We demonstrate that over the course of hibernation in continuous darkness, arctic ground squirrels (Urocitellus parryii) up-regulate the retrograde TSH/Deiodinase/TH pathway, remodel hypothalamic tanycytes, and activate the reproductive axis. Forcing the premature termination of hibernation by warming animals induced hypothalamic deiodinase expression and the accumulation of secretory granules in PT thyrotrophs and pituitary gonadotrophs, but did not further activate the reproductive axis. We suggest that periodic arousals may allow for the transient activation of hypothalamic thyroid hormone signaling, cellular remodeling, and re-programming of brain circuits in preparation for the short Arctic summer.


Assuntos
Hibernação , Animais , Hibernação/fisiologia , Iodeto Peroxidase , Sciuridae/fisiologia , Hormônios Tireóideos , Tireotropina
10.
Andrology ; 9(5): 1652-1661, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33998165

RESUMO

BACKGROUND: Circulating prolactin concentration in rodents and humans is sexually dimorphic. Oestrogens are a well-characterised stimulator of prolactin release. Circulating prolactin fluctuates throughout the menstrual/oestrous cycle of females in response to oestrogen levels, but remains continually low in males. We have previously identified androgens as an inhibitor of prolactin release through characterisation of males of a mouse line with a conditional pituitary androgen receptor knockout (PARKO) which have an increase in circulating prolactin, but unchanged lactotroph number. OBJECTIVES: In the present study, we aimed to specify the cell type that androgens act on to repress prolactin release. MATERIALS AND METHODS: PARKO, lactotroph-specific, Pit1 lineage-specific and neural-specific conditional androgen receptor knockout male mice were investigated using prolactin ELISA, pituitary electron microscopy, immunohistochemistry and qRT-PCR. RESULTS: Lactotroph-specific, Pit1 lineage-specific and neural-specific conditional AR knockouts did not duplicate the high circulating prolactin seen in the PARKO line. Using electron microscopy to examine ultrastructure, we showed that pituitary androgen receptor knockout male mice develop lactotrophs that resemble those seen in female mice. Castrated PARKO males have significantly reduced circulating prolactin compared to intact males. When expression of selected oestrogen-regulated anterior pituitary genes was examined, there were no differences in expression level between controls and knockouts. DISCUSSION: The cell type that androgens act on to repress prolactin release is not the lactotroph, cells in the Pit1-lineage, or the dopaminergic neurons in the hypothalamus. PARKO males develop a female-specific lactotroph ultrastructure that this is likely to contribute to the increase in circulating prolactin. Castrated PARKO males have significantly reduced circulating prolactin compared to intact males, which suggests that removal of both circulating oestrogens and androgens reduces the stimulation of pituitary prolactin release. CONCLUSION: Further investigation is needed into prolactin regulation by changes in androgen-oestrogen balance, which is involved sexual dimorphism of development and diseases including hyperprolactinemia.


Assuntos
Hiperprolactinemia/genética , Lactotrofos , Receptores Androgênicos/deficiência , Animais , Estrogênios/metabolismo , Masculino , Camundongos , Camundongos Knockout , Hipófise/metabolismo , Prolactina/metabolismo
11.
Am J Physiol Gastrointest Liver Physiol ; 299(1): G136-43, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20430871

RESUMO

The effect of 5-aminoimidazole-4-carboxamide-ribonucleoside (AICAR) activation of the AMP-activated protein kinase (AMPK) on the transport of the model radiolabeled dipeptide [(3)H]-D-Phe-L-Gln was investigated in the human epithelial colon cancer cell line Caco-2. Uptake and transepithelial fluxes of [(3)H]-D-Phe-L-Gln were carried out in differentiated Caco-2 cell monolayers, and hPepT1 and glucose transporter 2 (GLUT2) protein levels were quantified by immunogold electron microscopy. AICAR treatment of Caco-2 cells significantly inhibited apical [(3)H]-D-Phe-L-Gln uptake, matched by a decrease in brush-border membrane hPepT1 protein but with a concomitant increase in the facilitated glucose transporter GLUT2. A restructuring of the apical brush-border membrane was seen by electron microscopy. The hPepT1-mediated transepithelial (A-to-B) peptide flux across the Caco-2 monolayers showed no significant alteration in AICAR-treated cells. The electrical resistance in the AICAR-treated monolayers was significantly higher compared with control cells. Inhibition of the sodium/hydrogen exchanger 3 (NHE3) had an additive effect to AICAR, suggesting that the AMPK effect is not via NHE3. Fluorescence measurement of intracellular pH showed no reduction in the proton gradient driving PepT1-mediated apical uptake. The reduction in apical hPepT1 protein and dipeptide uptake after AICAR treatment in Caco-2 cells demonstrates a regulatory effect of AMPK on hPepT1, along with an influence on both the microvilli and tight junction structures. The absence of an associated reduction in transepithelial peptide movement implies an additional stimulatory effect of AICAR on the basolateral peptide transport system in these cells. These results provide a link between the hPepT1 transporter and the metabolic state of this model enterocyte.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Dipeptídeos/metabolismo , Células Epiteliais/enzimologia , Mucosa Intestinal/enzimologia , Simportadores/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Transporte Biológico , Células CACO-2 , Polaridade Celular , Forma Celular , Relação Dose-Resposta a Droga , Impedância Elétrica , Ativação Enzimática , Ativadores de Enzimas/farmacologia , Células Epiteliais/efeitos dos fármacos , Fluorometria , Transportador de Glucose Tipo 2/metabolismo , Guanidinas/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Mucosa Intestinal/efeitos dos fármacos , Cinética , Metacrilatos/farmacologia , Microscopia Eletrônica de Transmissão , Transportador 1 de Peptídeos , Ribonucleotídeos/farmacologia , Trocador 3 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/antagonistas & inibidores , Trocadores de Sódio-Hidrogênio/metabolismo
12.
J Neuroendocrinol ; 32(10): e12903, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32959418

RESUMO

The anterior and intermediate lobes of the pituitary are composed of endocrine cells, as well as vasculature and supporting cells, such as folliculostellate cells. Folliculostellate cells form a network with several postulated roles in the pituitary, including production of paracrine signalling molecules and cytokines, coordination of endocrine cell hormone release, phagocytosis, and structural support. Folliculostellate cells in rats are characterised by expression of S100B protein, and in humans by glial fibrillary acid protein. However, there is evidence for another network of supporting cells in the anterior pituitary that has properties of mural cells, such as vascular smooth muscle cells and pericytes. The present study aims to characterise the distribution of cells that express the mural cell marker platelet derived growth factor receptor beta (PDGFRß) in the mouse pituitary and establish whether these cells are folliculostellate. By immunohistochemical localisation, we determine that approximately 80% of PDGFRß+ cells in the mouse pituitary have a non-perivascular location and 20% are pericytes. Investigation of gene expression in a magnetic cell sorted population of PDGFRß+ cells shows that, despite a mostly non-perivascular location, this population is enriched for mural cell markers but not enriched for rat or human folliculostellate cell markers. This is confirmed by immunohistochemistry. The present study concludes that a mural cell network is present throughout the anterior pituitary of the mouse and that this population does not express well-characterised human or rat folliculostellate cell markers.


Assuntos
Comunicação Celular/fisiologia , Hipófise/citologia , Animais , Biomarcadores/metabolismo , Células Endócrinas/citologia , Células Endócrinas/fisiologia , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Pericitos/citologia , Pericitos/fisiologia , Hipófise/metabolismo , Adeno-Hipófise/citologia , Adeno-Hipófise/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Fatores de Transcrição SOXB1/metabolismo
13.
JCI Insight ; 52019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31265437

RESUMO

Hormones produced by the anterior pituitary gland regulate an array of important physiological functions, but pituitary hormone disorders are not fully understood. Herein we report that genetically-engineered mice with deletion of the hedgehog signaling receptor Patched1 by S100a4 promoter-driven Cre recombinase (S100a4-Cre;Ptch1fl/fl mutants) exhibit adult-onset hypogonadotropic hypogonadism and multiple pituitary hormone disorders. During the transition from puberty to adult, S100a4-Cre;Ptch1fl/fl mice of both sexes develop hypogonadism coupled with reduced gonadotropin levels. Their pituitary glands also display severe structural and functional abnormalities, as revealed by transmission electron microscopy and expression of key genes regulating pituitary endocrine functions. S100a4-Cre activity in the anterior pituitary gland is restricted to CD45+ cells of hematopoietic origin, including folliculo-stellate cells and other immune cell types, causing sex-specific changes in the expression of genes regulating the local microenvironment of the anterior pituitary. These findings provide in vivo evidence for the importance of pituitary hematopoietic cells in regulating fertility and endocrine function, in particular during sexual maturation and likely through sexually dimorphic mechanisms. These findings support a previously unrecognized role of hematopoietic cells in causing hypogonadotropic hypogonadism and provide inroads into the molecular and cellular basis for pituitary hormone disorders in humans.


Assuntos
Hipogonadismo/metabolismo , Integrases/metabolismo , Receptor Patched-1/metabolismo , Hipófise/metabolismo , Proteína A4 de Ligação a Cálcio da Família S100/metabolismo , Animais , Epididimo/patologia , Feminino , Humanos , Hipogonadismo/genética , Hipogonadismo/patologia , Masculino , Camundongos , Camundongos Knockout , Ovário/patologia , Receptor Patched-1/genética , Adeno-Hipófise/metabolismo , Reprodução/fisiologia , Glândulas Seminais/patologia , Maturidade Sexual , Transdução de Sinais , Testículo , Testosterona/sangue , Útero/patologia
14.
Biochim Biophys Acta ; 1768(3): 401-10, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17258169

RESUMO

CD98 (otherwise known as 4F2) is an integral membrane protein with multiple functions including amino acid transport, integrin activation, cell fusion and cell activation. The molecular mechanisms coordinating these multiple functions remain unclear. We have studied CD98 heavy chain (hc) function in a human placental trophoblast cell line (BeWo). We show that cross-linking of CD98hc by incubation of cells in the presence of functional monoclonal antibodies causes cellular re-distribution of the protein from the cytoplasm to the plasma membrane as measured by flow cytometry, western blotting and quantitative immuno-electron microscopy. The latter technique also indicated that CD98hc is trafficked between cell surface and cytoplasmic pools in vesicles. Increased cell surface CD98 correlates with increased cellular fusion in BeWo cells. In addition, we show reduced LAT 1 surface expression and neutral amino acid transport in the presence of the CD98 mabs. The results thus suggest that the function of CD98 in cell fusion is distinct from its role in cellular nutrient delivery.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Fusão Celular , Cadeia Pesada da Proteína-1 Reguladora de Fusão/metabolismo , Placenta/fisiologia , Trofoblastos/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/ultraestrutura , Western Blotting , Linhagem Celular , Reagentes de Ligações Cruzadas/metabolismo , Feminino , Citometria de Fluxo , Técnica Indireta de Fluorescência para Anticorpo , Cadeia Pesada da Proteína-1 Reguladora de Fusão/genética , Cadeia Pesada da Proteína-1 Reguladora de Fusão/ultraestrutura , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/ultraestrutura , Placenta/citologia , Gravidez , Trofoblastos/metabolismo , Trofoblastos/ultraestrutura
15.
J Clin Endocrinol Metab ; 93(6): 2390-401, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18381572

RESUMO

CONTEXT: Mutations have been identified in the aryl hydrocarbon receptor-interacting protein (AIP) gene in familial isolated pituitary adenomas (FIPA). It is not clear, however, how this molecular chaperone is involved in tumorigenesis. OBJECTIVE: AIP sequence changes and expression were studied in FIPA and sporadic adenomas. The function of normal and mutated AIP molecules was studied on cell proliferation and protein-protein interaction. Cellular and ultrastructural AIP localization was determined in pituitary cells. PATIENTS: Twenty-six FIPA kindreds and 85 sporadic pituitary adenoma patients were included in the study. RESULTS: Nine families harbored AIP mutations. Overexpression of wild-type AIP in TIG3 and HEK293 human fibroblast and GH3 pituitary cell lines dramatically reduced cell proliferation, whereas mutant AIP lost this ability. All the mutations led to a disruption of the protein-protein interaction between AIP and phosphodiesterase-4A5. In normal pituitary, AIP colocalizes exclusively with GH and prolactin, and it is found in association with the secretory vesicle, as shown by double-immunofluorescence and electron microscopy staining. In sporadic pituitary adenomas, however, AIP is expressed in all tumor types. In addition, whereas AIP is expressed in the secretory vesicle in GH-secreting tumors, similar to normal GH-secreting cells, in lactotroph, corticotroph, and nonfunctioning adenomas, it is localized to the cytoplasm and not in the secretory vesicles. CONCLUSIONS: Our functional evaluation of AIP mutations is consistent with a tumor-suppressor role for AIP and its involvement in familial acromegaly. The abnormal expression and subcellular localization of AIP in sporadic pituitary adenomas indicate deranged regulation of this protein during tumorigenesis.


Assuntos
Adenoma/genética , Neoplasias Hipofisárias/genética , Proteínas/fisiologia , Acromegalia/genética , Acromegalia/metabolismo , Adenoma/metabolismo , Adolescente , Adulto , Idoso , Proliferação de Células , Criança , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Testes Genéticos , Hormônio do Crescimento Humano/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Pessoa de Meia-Idade , Neoplasias Hipofisárias/metabolismo , Ligação Proteica , Proteínas/genética , Proteínas/metabolismo , Transfecção , Células Tumorais Cultivadas
16.
Eur J Neurosci ; 28(12): 2459-73, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19032594

RESUMO

The protein alpha-synuclein is central to the pathophysiology of Parkinson's disease (PD) but its role in the development of neurodegeneration remains unclear. alpha-Synuclein-knockout mice develop without gross abnormality and are resistant to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a mitochondrial inhibitor widely used to model parkinsonism. Here we show that differentiated human dopaminergic neuron-like cells also have increased resistance to 1-methyl-4-phenylpyridine (MPP+), the active metabolite of MPTP, when alpha-synuclein is knocked down using RNA interference. In attempting to understand how this occurred we found that lowering alpha-synuclein levels caused changes to intracellular vesicles, dopamine transporter (DAT) and vesicular monoamine transporter (VMAT2), each of which is known to be an important component of the early events leading to MPP+ toxicity. Knockdown of alpha-synuclein reduced the availability of DAT on the neuronal surface by 50%, decreased the total number of intracellular vesicles by 37% but increased the density of VMAT2 molecules per vesicle by 2.8-fold. However, these changes were not associated with any reduction in MPP+ -induced superoxide production, suggesting that alpha-synuclein knockdown may have other downstream effects which are important. We then showed that alpha-synuclein knockdown prevented MPP+ -induced activation of nitric oxide synthase (NOS). Activation of NOS is an essential step in MPTP toxicity and increasing evidence points to nitrosative stress as being important in neurodegeneration. Overall, these results show that as well as having a number of effects on cellular events upstream of mitochondrial dysfunction alpha-synuclein affects pathways downstream of superoxide production, possibly involving regulation of NOS activity.


Assuntos
1-Metil-4-fenilpiridínio/toxicidade , Neurônios/efeitos dos fármacos , alfa-Sinucleína/genética , 1-Metil-4-fenilpiridínio/metabolismo , Animais , Linhagem Celular , Vesículas Citoplasmáticas/metabolismo , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Ativação Enzimática , Técnicas de Silenciamento de Genes , Herbicidas/metabolismo , Herbicidas/toxicidade , Humanos , Camundongos , Neurônios/citologia , Neurônios/fisiologia , Óxido Nítrico Sintase/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Superóxidos/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , alfa-Sinucleína/metabolismo
17.
Trends Endocrinol Metab ; 18(10): 371-8, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17997105

RESUMO

Androgens are known to exert their effects via genomic signalling, which involves intracellular androgen receptors that modulate gene expression on steroid binding. Whereas non-classical estrogen effects are well established, it is only recently that non-classical, rapid, membrane-initiated testosterone actions have received attention. Non-classical effects of testosterone have now been demonstrated convincingly in several tissues, in particular in the reproductive, cardiovascular, immune and musculoskeletal systems. There is evidence for the participation of the classical intracellular androgen receptor and for involvement of novel, membrane-associated androgen receptors in the non-classical actions of testosterone. Here we discuss evidence for rapid testosterone actions, which have clinical implications in fertility, cardiovascular disease and the treatment of prostate cancer.


Assuntos
Testosterona/farmacologia , Sistema Cardiovascular , Feminino , Humanos , Imunidade , Masculino , Músculo Esquelético , Oócitos , Próstata , Células de Sertoli , Transdução de Sinais , Testosterona/fisiologia
18.
Endocrinology ; 148(3): 1030-8, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17158208

RESUMO

Annexin 1 (ANXA1) is a member of the annexin family of phospholipid- and calcium-binding proteins with a well demonstrated role in early delayed (30 min to 3 h) inhibitory feedback of glucocorticoids in the hypothalamus and pituitary gland. This study used adrenal gland tissue from ANXA1-null transgenic mice, in which a beta-galactosidase (beta-Gal) reporter gene was controlled by the ANXA1 promoter, and wild-type control mice to explore the potential role of ANXA1 in adrenal function. RT-PCR and Western blotting revealed strong expression of ANXA1 mRNA and protein in the adrenal gland. Immunofluorescence labeling of ANXA1 in wild-type and beta-Gal expression in ANXA1-null adrenals localized intense staining in the outer perimeter cell layers. Immunogold electron microscopy identified cytoplasmic and nuclear ANXA1 labeling in outer cortical cells and capsular cells. Exposure of adrenal segments in vitro to dexamethasone (0.1 mum, 3 h) caused an increase in the amount of ANXA1 in the intracellular compartment and attached to the surface of the cells. The N-terminal peptide ANXA1(Ac2-26) inhibited corticosterone release. Corticosterone release was significantly greater from ANXA1-null adrenal cells compared with wild type in response to ACTH (10 pm to 5 nm). In contrast, basal and ACTH-stimulated aldosterone release from ANXA1-null adrenal cells was not different from wild type. Morphometry studies demonstrated that ANXA1 null adrenal glands were smaller than wild-type, and the cortical/medullary area ratio was significantly reduced. These results suggest ANXA1 is a regulator of adrenocortical size and corticosterone secretion.


Assuntos
Glândulas Suprarrenais/metabolismo , Glândulas Suprarrenais/ultraestrutura , Anexina A1/metabolismo , Hormônio Adrenocorticotrópico/farmacologia , Animais , Antígenos de Superfície/metabolismo , Western Blotting , Células Cultivadas , Corticosterona/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
FEBS J ; 274(11): 2715-27, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17451431

RESUMO

CD98 heavy chain (CD98hc), expressed at high levels in developing human trophoblasts, is an integral membrane protein with multiple N-linked glycosylation sites and known to be important for cell fusion, adhesion, and amino acid transport. Western blotting and flow cytometry were used to study the effect of brefeldin A, an inhibitor of protein translocation through the Golgi, on CD98hc in the human placental trophoblast cell line BeWo. Although brefeldin A treatment caused increased cell surface expression of CD98hc, a novel partially glycosylated form of the protein was found and, concomitantly, cell fusion was reduced. Western blotting showed that CD98 and galectin 3, a proposed ligand for the glycosylated extracellular domain of CD98hc, co-immunoprecipitated, and double-label immuno-electron microscopy confirmed that CD98hc associated with galectin 3. Furthermore, cell fusion was reduced (specifically) by the disaccharide lactose, a known ligand for the carbohydrate recognition domain of galectin 3, suggesting that the association was functional. Taken together, the data suggest that N-glycosylation of CD98 and subsequent interaction with galectin 3 is critical for aspects of placental cell biology, and provides a rationale for the observation that, in the mouse, truncation of the CD98hc extracellular domain leads to early embryonic lethality [Tsumura H, Suzuki N, Saito H, Kawano M, Otake S, Kozuka Y, Komada H, Tsurudome M & Ito Y (2003) Biochem Biophys Res Commun 308, 847-851].


Assuntos
Fusão Celular , Proteína-1 Reguladora de Fusão/fisiologia , Galectina 3/metabolismo , Brefeldina A/farmacologia , Linhagem Celular , Colforsina/farmacologia , Proteína-1 Reguladora de Fusão/biossíntese , Expressão Gênica/efeitos dos fármacos , Glicosilação/efeitos dos fármacos , Humanos , Placenta/citologia , Transporte Proteico/efeitos dos fármacos , Trofoblastos , Tunicamicina/farmacologia
20.
J Endocrinol ; 192(2): 429-42, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17283243

RESUMO

Annexin 1 (ANXA1) is a Ca2+- and phospholipid-binding protein that plays an important role as a mediator of glucocorticoid action in the host-defence and neuroendocrine systems. Sex differences in hypothalamo-pituitary-adrenal (HPA) axis activity are well documented and a number of studies have demonstrated that gonadal steroids act as regulators of HPA activity. The aim of this study was to investigate the effect of ovariectomy and 17beta-estradiol replacement, and estrous cycle stage, on anterior pituitary ANXA1 content. The amount of anterior pituitary ANXA1 determined by western blotting varied with estrous cycle stage with a peak at estrus declining to a trough at proestrus. Ovariectomy resulted in a significant (P<0 x 05) decrease in anterior pituitary ANXA1 content. Administration of 17beta-estradiol (1 microg/100 g) significantly (P<0 x 01) increased anterior pituitary ANXA1 expression in the ovariectomized animals. In contrast, there was no change in pituitary ANXA1 content in response to 17beta-estradiol in adrenalectomized and adrenalectomized/ovariectomized rats. Treatment of TtT/GF cells, a folliculo-stellate cell line, with 17beta-estradiol (1 x 8-180 nM) increased ANXA1 mRNA expression and increased the amount of ANXA1 protein externalized in response to a dexamethasone stimulus. These results indicate that 17beta-estradiol stimulates ANXA1 expression in the anterior pituitary and in vivo an adrenal factor contributes to the mechanism of action.


Assuntos
Anexina A1/análise , Estradiol/farmacologia , Adeno-Hipófise/metabolismo , Adrenalectomia , Hormônio Adrenocorticotrópico/metabolismo , Animais , Anexina A1/genética , Anexina A1/metabolismo , Western Blotting/métodos , Linhagem Celular , Corticosterona/metabolismo , Hormônio Liberador da Corticotropina/farmacologia , Dexametasona/farmacologia , Eletroforese em Gel de Poliacrilamida , Ciclo Estral , Feminino , Expressão Gênica/efeitos dos fármacos , Glucocorticoides/farmacologia , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/metabolismo , Ovariectomia , Adeno-Hipófise/química , Adeno-Hipófise/efeitos dos fármacos , RNA Mensageiro/análise , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estimulação Química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA