Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Neural Eng ; 19(1)2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-34942614

RESUMO

There is a need for the development of new cellular therapies for the treatment of many diseases, with the central nervous system (CNS) currently an area of specific focus. Due to the complexity and delicacy of its biology, there is currently a limited understanding of neurogenesis and consequently a lack of reliable test platforms, resulting in several CNS based diseases having no cure. The ability to differentiate pluripotent stem cells into specific neuronal sub-types may enable scalable manufacture for clinical therapies, with a focus also on the purity and quality of the cell population. This focus is targeted towards an urgent need for the diseases that currently have no cure, e.g. Parkinson's disease. Differentiation studies carried out using traditional 2D cell culture techniques are designed using biological signals and morphogens known to be important for neurogenesisin vivo.However, such studies are limited by their simplistic nature, including a general poor efficiency and reproducibility, high reagent costs and an inability to scale-up the process to a manufacture-wide design for clinical use. Biomimetic approaches to recapitulate a morein vivo-like environment are progressing rapidly within this field, with application of bio(chemical) gradients presented both as 2D surfaces and within a 3D volume. This review focusses on the development and application of these advanced extracellular environments particularly for the neural niche. We emphasise the progress that has been made specifically in the area of stem cell derived neuronal differentiation. Increasing developments in biomaterial approaches to manufacture stem cells will enable the improvement of differentiation protocols, enhancing the efficiency and repeatability of the process with a move towards up-scaling. Progress in this area brings these techniques closer to enabling the development of therapies for the clinic.


Assuntos
Biomimética , Neurogênese , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Neurogênese/fisiologia , Reprodutibilidade dos Testes
2.
ACS Biomater Sci Eng ; 4(1): 98-106, 2018 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33418681

RESUMO

The disordered environment found in conventional neural cultures impedes various applications where cell directionality is a key process for functionality. Neurons are highly specialized cells known to be greatly dependent on interactions with their surroundings. Therefore, when chemical cues are incorporated on the surface material, a precise control over neuronal behavior can be achieved. Here, the behavior of SH-SY5Y neurons on a variety of self-assembled monolayers (SAMs) and polymer brushes both in isolation and combination to promote cellular spatial control was determined. APTES and BIBB coatings promoted the highest cell viability, proliferation, metabolic activity, and neuronal maturation, while low cell survival was seen on PKSPMA and PMETAC surfaces. These cell-attractive and repulsive surfaces were combined to generate a binary BIBB-PKSPMA coating, whereby cellular growth was restricted to an exclusive neural region. The utility of these coatings when precisely combined could act as a bioactive/bioinert surface resulting in a biomimetic environment where control over neuronal growth and directionality can be achieved.

3.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA