RESUMO
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) constitute an appealing tool for drug discovery, disease modeling, and cardiotoxicity screening. However, their physiological immaturity, resembling CMs in the late fetal stage, limits their utility. Herein, we have developed a novel, scalable cell culture medium designed to enhance the maturation of hPSC-CMs. This medium facilitates a metabolic shift towards fatty acid utilization and augments mitochondrial function by targeting Acetyl-CoA carboxylase 2 (ACC2) with a specific small molecule inhibitor. Our findings demonstrate that this maturation protocol significantly advances the metabolic, structural, molecular and functional maturity of hPSC-CMs at various stages of differentiation. Furthermore, it enables the creation of cardiac microtissues with superior structural integrity and contractile properties. Notably, hPSC-CMs cultured in this optimized maturation medium display increased accuracy in modeling a hypertrophic cardiac phenotype following acute endothelin-1 induction and show a strong correlation between in vitro and in vivo target engagement in drug screening efforts. This approach holds promise for improving the utility and translatability of hPSC-CMs in cardiac disease modeling and drug discovery.
Assuntos
Acetil-CoA Carboxilase , Diferenciação Celular , Miócitos Cardíacos , Células-Tronco Pluripotentes , Humanos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Acetil-CoA Carboxilase/metabolismo , Acetil-CoA Carboxilase/antagonistas & inibidores , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Diferenciação Celular/efeitos dos fármacos , Meios de Cultura/farmacologia , Inibidores Enzimáticos/farmacologia , AnimaisRESUMO
Apolipoprotein L1 (APOL1) high-risk genotypes are associated with increased risk of chronic kidney disease (CKD) in people of West African ancestry. Given the importance of endothelial cells (ECs) in CKD, we hypothesized that APOL1 high-risk genotypes may contribute to disease via EC-intrinsic activation and dysfunction. Single cell RNA sequencing (scRNA-seq) analysis of the Kidney Precision Medicine Project dataset revealed APOL1 expression in ECs from various renal vascular compartments. Utilizing two public transcriptomic datasets of kidney tissue from African Americans with CKD and a dataset of APOL1-expressing transgenic mice, we identified an EC activation signature; specifically, increased intercellular adhesion molecule 1 (ICAM-1) expression and enrichment in leukocyte migration pathways. In vitro, APOL1 expression in ECs derived from genetically modified human induced pluripotent stem cells and glomerular ECs triggered changes in ICAM-1 and platelet endothelial cell adhesion molecule 1 (PECAM-1) leading to an increase in monocyte attachment. Overall, our data suggest the involvement of APOL1 as an inducer of EC activation in multiple renal vascular beds with potential effects beyond the glomerular vasculature.
RESUMO
Lipid nanoparticles (LNPs) are currently used to transport functional mRNAs, such as COVID-19 mRNA vaccines. The delivery of angiogenic molecules, such as therapeutic VEGF-A mRNA, to ischemic tissues for producing new blood vessels is an emerging strategy for the treatment of cardiovascular diseases. Here, the authors deliver VEGF-A mRNA via LNPs and study stoichiometric quantification of their uptake kinetics and how the transport of exogenous LNP-mRNAs between cells is functionally extended by cells' own vehicles called extracellular vesicles (EVs). The results show that cellular uptake of LNPs and their mRNA molecules occurs quickly, and that the translation of exogenously delivered mRNA begins immediately. Following the VEGF-A mRNA delivery to cells via LNPs, a fraction of internalized VEGF-A mRNA is secreted via EVs. The overexpressed VEGF-A mRNA is detected in EVs secreted from three different cell types. Additionally, RNA-Seq analysis reveals that as cells' response to LNP-VEGF-A mRNA treatment, several overexpressed proangiogenic transcripts are packaged into EVs. EVs are further deployed to deliver VEGF-A mRNA in vitro and in vivo. Upon equal amount of VEGF-A mRNA delivery via three EV types or LNPs in vitro, EVs from cardiac progenitor cells are the most efficient in promoting angiogenesis per amount of VEGF-A protein produced. Intravenous administration of luciferase mRNA shows that EVs could distribute translatable mRNA to different organs with the highest amounts of luciferase detected in the liver. Direct injections of VEGF-A mRNA (via EVs or LNPs) into mice heart result in locally produced VEGF-A protein without spillover to liver and circulation. In addition, EVs from cardiac progenitor cells cause minimal production of inflammatory cytokines in cardiac tissue compared with all other treatment types. Collectively, the data demonstrate that LNPs transform EVs as functional extensions to distribute therapeutic mRNA between cells, where EVs deliver this mRNA differently than LNPs.
Assuntos
COVID-19 , Vesículas Extracelulares , Camundongos , Animais , RNA Mensageiro/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , COVID-19/metabolismo , Vesículas Extracelulares/metabolismoRESUMO
Hydrogels are used in a wide range of biomedical applications, including three-dimensional (3D) cell culture, cell therapy and bioprinting. To enable processing using advanced additive fabrication techniques and to mimic the dynamic nature of the extracellular matrix (ECM), the properties of the hydrogels must be possible to tailor and change over time with high precision. The design of hydrogels that are both structurally and functionally dynamic, while providing necessary mechanical support is challenging using conventional synthesis techniques. Here, we show a modular and 3D printable hydrogel system that combines a robust but tunable covalent bioorthogonal cross-linking strategy with specific peptide-folding mediated interactions for dynamic modulation of cross-linking and functionalization. The hyaluronan-based hydrogels were covalently cross-linked by strain-promoted alkyne-azide cycloaddition using multi-arm poly(ethylene glycol). In addition, a de novo designed helix-loop-helix peptide was conjugated to the hyaluronan backbone to enable specific peptide-folding modulation of cross-linking density and kinetics, and hydrogel functionality. An array of complementary peptides with different functionalities was developed and used as a toolbox for supramolecular tuning of cell-hydrogel interactions and for controlling enzyme-mediated biomineralization processes. The modular peptide system enabled dynamic modifications of the properties of 3D printed structures, demonstrating a novel route for design of more sophisticated bioinks for four-dimensional bioprinting.
Assuntos
Bioimpressão , Hidrogéis/química , Peptídeos/química , Células Imobilizadas/citologia , Reagentes de Ligações Cruzadas/química , Módulo de Elasticidade , Células Hep G2 , Humanos , Modelos Moleculares , Multimerização Proteica , Temperatura , Fatores de TempoRESUMO
Photolithography and soft lithography are two common methods for fabrication of microfluidic cell culture devices. Well-defined microstructures are created by exposing a photoresist to UV-light under a photolithographic mask in which the intended patterns are transparent. The subsequent cross-linking of UV-exposed photoresist generates a reusable master that serves as a template for an elastomer, commonly polydimethylsiloxane (PDMS), that reciprocally recaptures the structures of the master in an optically clear and oxygen-permeable rubber-like material. Connections to the cell culture-containing channels of the device for perfusion of culture medium can be established by inserting tubing through the elastomer. In this protocol, the basic steps for making a standard microfluidic device for cell-based assays from photolithography and soft lithography techniques are outlined.
Assuntos
Dispositivos Lab-On-A-Chip , Microfluídica/instrumentação , Técnicas de Cultura de Células , Dimetilpolisiloxanos/química , Elastômeros/química , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacosRESUMO
Microfluidic devices provide convenient assays tools for testing cell cultures in three-dimensional (3D) formats. These devices have significant potential for establishing assays that are better at predicting drug toxicity and efficacy effects compared to assays in conventional two-dimensional (2D) cultures. Microfluidic cell culture devices consist of perfused cell culture chambers with inlets and outlet for seeding, culturing, sampling, and assaying the cells. This protocol describes how to prepare and seed cells in a microfluidic cell culture device for drug toxicity testing on cells in a 3D structure. The protocol exemplifies the use of a basic microfluidic device with HepG2 hepatoma cells but can be transferred and optimized for other cells and cell types, including iPSC-derived tissue and organ cells.
Assuntos
Técnicas de Cultura de Células/métodos , Dispositivos Lab-On-A-Chip , Testes de Toxicidade , Linhagem Celular Tumoral , Células Hep G2 , Humanos , Imagem ÓpticaRESUMO
The ideal cell culture model should mimic the cell physiology and the mechanical and the chemical cues that are present in specific tissues and organs, within a convenient high-throughput format. A possible key feature for such models is to recapture the cell polarity, the interactions between cells, and the interactions between the cells and the elastic extracellular matrix (ECM) by orienting the cells in a three-dimensional (3D) matrix. A common method to create 3D cell environments is to let the cells aggregate into spheroids with a diameter of around 200 µm. A major challenge for 3D cell cultures is to perform quick and easy imaging of the dense cell population, especially noninvasively. This protocol explains how to take advantage of the number of cells growing out from cell spheroids over time as a readout of the effect of a drug. The assay is compatible with standard imaging techniques and can be performed noninvasively using light microscopy or as a complement to other fluorescent imaging assays.
Assuntos
Técnicas de Cultura de Células/métodos , Miócitos Cardíacos/citologia , Esferoides Celulares/efeitos dos fármacos , Amiodarona/farmacologia , Aspirina/farmacologia , Bioensaio , Doxorrubicina/farmacologia , Matriz Extracelular , Ensaios de Triagem em Larga Escala , Humanos , Esferoides Celulares/citologiaRESUMO
Liver cell culture models are attractive in both tissue engineering and for development of assays for drug toxicology research. To retain liver specific cell functions, the use of adequate cell types and culture conditions, such as a 3D orientation of the cells and a proper supply of nutrients and oxygen, are critical. In this article, we show how extracellular matrix mimetic hydrogels can support hepatocyte viability and functionality in a perfused liver-on-a-chip device. A modular hydrogel system based on hyaluronan and poly(ethylene glycol) (HA-PEG), modified with cyclooctyne moieties for bioorthogonal strain-promoted alkyne-azide 1, 3-dipolar cycloaddition (SPAAC), was developed, characterized, and compared for cell compatibility to hydrogels based on agarose and alginate. Hepatoma cells (HepG2) formed spheroids with viable cells in all hydrogels with the highest expression of albumin and urea in alginate hydrogels. By including an excess of cyclooctyne in the HA backbone, azide-modified cell adhesion motifs (linear and cyclic RGD peptides) could be introduced in order to enhance viability and functionality of human induced pluripotent stem cell derived hepatocytes (hiPS-HEPs). In the HA-PEG hydrogels modified with cyclic RGD peptides hiPS-HEPs migrated and grew in 3D and showed an increased viability and higher albumin production compared to when cultured in the other hydrogels. This flexible SPAAC crosslinked hydrogel system enabled fabrication of perfused 3D cell culture of hiPS-HEPs and is a promising material for further development and optimization of liver-on-a-chip devices.
Assuntos
Técnicas de Cultura de Células/instrumentação , Hepatócitos/citologia , Ácido Hialurônico/química , Fígado/citologia , Polietilenoglicóis/química , Engenharia Tecidual/instrumentação , Materiais Biocompatíveis/química , Sobrevivência Celular , Matriz Extracelular/química , Hidrogéis/química , Células-Tronco Pluripotentes Induzidas/citologia , Dispositivos Lab-On-A-ChipRESUMO
Three-dimensional (3D) models with cells arranged in clusters or spheroids have emerged as valuable tools to improve physiological relevance in drug screening. One of the challenges with cells cultured in 3D, especially for high-throughput applications, is to quickly and non-invasively assess the cellular state in vitro. In this article, we show that the number of cells growing out from human induced pluripotent stem cell (hiPSC)-derived cardiac spheroids can be quantified to serve as an indicator of a drug’s effect on spheroids captured in a microfluidic device. Combining this spheroid-on-a-chip with confocal high content imaging reveals easily accessible, quantitative outgrowth data. We found that effects on outgrowing cell numbers correlate to the concentrations of relevant pharmacological compounds and could thus serve as a practical readout to monitor drug effects. Here, we demonstrate the potential of this semi-high-throughput “cardiac cell outgrowth assay” with six compounds at three concentrations applied to spheroids for 48 h. The image-based readout complements end-point assays or may be used as a non-invasive assay for quality control during long-term culture.
RESUMO
Mechatronic design is an engineering methodology for conceiving, configuring and optimising the design of a technical device or product to the needs and requirements of the final user. In this article, we show how the basic principles of this methodology can be exploited for in vitro cell cultures-often referred to as organ-on-a-chip devices. Due to the key role of the biological cells, we have introduced the term bio-mechatronic design, to highlight the complexity of designing a system that should integrate biology, mechanics and electronics in the same device structure. The strength of the mechatronic design is to match the needs of the potential users to a systematic evaluation of overall functional design alternative. It may be especially attractive for organs-on-chips where biological constituents such as cells and tissues in 3D settings and in a fluidic environment should be compared, screened and selected. Through this approach, design solutions ranked to customer needs are generated according to specified criteria, thereby defining the key constraints of the fabrication. As an example, the bio-mechatronic methodology is applied to a liver-on-a-chip based on information extrapolated from previous theoretical and experimental knowledge. It is concluded that the methodology can generate new fabrication solutions for devices, as well as efficient guidelines for refining the design and fabrication of many of today's organ-on-a-chip devices.
Assuntos
Biomimética/métodos , Dispositivos Lab-On-A-Chip , Animais , Técnicas de Cultura de Células , Desenho de Equipamento , Humanos , Fígado/fisiologia , MicrofluídicaRESUMO
Modeling tissues and organs using conventional 2D cell cultures is problematic as the cells rapidly lose their in vivo phenotype. In microfluidic bioreactors the cells reside in microstructures that are continuously perfused with cell culture medium to provide a dynamic environment mimicking the cells natural habitat. These micro scale bioreactors are sometimes referred to as organs-on-chips and are developed in order to improve and extend cell culture experiments. Here, we describe the two manufacturing techniques photolithography and soft lithography that are used in order to easily produce microfluidic bioreactors. The use of these bioreactors is exemplified by a toxicity assessment on 3D clustered human pluripotent stem cells (hPSC)-derived cardiomyocytes by beating frequency imaging.
Assuntos
Reatores Biológicos , Técnicas Analíticas Microfluídicas/instrumentação , Miócitos Cardíacos/citologia , Células-Tronco Pluripotentes/citologia , Testes de Toxicidade/instrumentação , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos/instrumentação , Avaliação Pré-Clínica de Medicamentos/métodos , Desenho de Equipamento , Humanos , Técnicas Analíticas Microfluídicas/métodos , Microtecnologia/instrumentação , Microtecnologia/métodos , Testes de Toxicidade/métodosRESUMO
Beating in vivo-like human cardiac bodies (CBs) were used in a microfluidic device for testing cardiotoxicity. The CBs, cardiomyocyte cell clusters derived from induced pluripotent stem cells, exhibited typical structural and functional properties of the native human myocardium. The CBs were captured in niches along a perfusion channel in the device. Video imaging was utilized for automatic monitoring of the beating frequency of each individual CB. The device allowed assessment of cardiotoxic effects of drug substances doxorubicin, verapamil and quinidine on the 3D clustered cardiomyocytes. Beating frequency data recorded over a period of 6 hours are presented and compared to literature data. The results indicate that this microfluidic setup with imaging of CB characteristics provides a new opportunity for label-free, non-invasive investigation of toxic effects in a 3D microenvironment.
Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Técnicas Analíticas Microfluídicas/instrumentação , Modelos Cardiovasculares , Miócitos Cardíacos/citologia , Testes de Toxicidade/instrumentação , Cardiotoxinas/toxicidade , Corpos Embrioides , Humanos , Processamento de Imagem Assistida por Computador/métodos , Técnicas de Cultura de Tecidos , Testes de Toxicidade/métodosRESUMO
Autophagy and apoptosis are basic physiologic processes contributing to the maintenance of cellular homeostasis. Autophagy encompasses pathways that target long-lived cytosolic proteins and damaged organelles. It involves a sequential set of events including double membrane formation, elongation, vesicle maturation and finally delivery of the targeted materials to the lysosome. Apoptotic cell death is best described through its morphology. It is characterized by cell rounding, membrane blebbing, cytoskeletal collapse, cytoplasmic condensation, and fragmentation, nuclear pyknosis, chromatin condensation/fragmentation, and formation of membrane-enveloped apoptotic bodies, that are rapidly phagocytosed by macrophages or neighboring cells. Neurodegenerative disorders are becoming increasingly prevalent, especially in the Western societies, with larger percentage of members living to an older age. They have to be seen not only as a health problem, but since they are care-intensive, they also carry a significant economic burden. Deregulation of autophagy plays a pivotal role in the etiology and/or progress of many of these diseases. Herein, we briefly review the latest findings that indicate the involvement of autophagy in neurodegenerative diseases. We provide a brief introduction to autophagy and apoptosis pathways focusing on the role of mitochondria and lysosomes. We then briefly highlight pathophysiology of common neurodegenerative disorders like Alzheimer's diseases, Parkinson's disease, Huntington's disease and Amyotrophic lateral sclerosis. Then, we describe functions of autophagy and apoptosis in brain homeostasis, especially in the context of the aforementioned disorders. Finally, we discuss different ways that autophagy and apoptosis modulation may be employed for therapeutic intervention during the maintenance of neurodegenerative disorders.