Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Neurophysiol ; 94(5): 3357-67, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16000529

RESUMO

Previous studies have shown that layer V pyramidal neurons projecting either to subcortical structures or the contralateral cortex undergo different morphological and electrophysiological patterns of development during the first three postnatal weeks. To isolate the determinants of this differential maturation, we analyzed the gene expression and intrinsic membrane properties of layer V pyramidal neurons projecting either to the superior colliculus (SC cells) or the contralateral cortex (CC cells) by combining whole cell recordings and single-cell RT-PCR in acute slices prepared from postnatal day (P) 5-7 or P21-30 old mice. Among the 24 genes tested, the calcium channel subunits alpha1B and alpha1C, the protease Nexin 1, and the calcium-binding protein calbindin were differentially expressed in adult SC and CC cells and the potassium channel subunit Kv4.3 was expressed preferentially in CC cells at both stages of development. Intrinsic membrane properties, including input resistance, amplitude of the hyperpolarization-activated current, and action potential threshold, differed quantitatively between the two populations as early as from the first postnatal week and persisted throughout adulthood. However, the two cell types had similar regular action potential firing behaviors at all developmental stages. Surprisingly, when we increased the duration of anesthesia with ketamine-xylazine or pentobarbital before decapitation, a proportion of mature SC cells, but not CC cells, fired bursts of action potentials. Together these results indicate that the two populations of layer V pyramidal neurons already start to differ during the first postnatal week and exhibit different firing capabilities after anesthesia.


Assuntos
Envelhecimento/fisiologia , Anestésicos/administração & dosagem , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Neocórtex/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/fisiologia , Células Piramidais/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Envelhecimento/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Camundongos , Neocórtex/efeitos dos fármacos , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Neurônios/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos
2.
J Neurophysiol ; 88(3): 1318-27, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12205153

RESUMO

Nicotinic acetylcholine receptors are widely expressed in the neocortex but their functional roles remain largely unknown. Here we investigated the effect of nicotinic receptor activation on interneurons of layer I, which contains a high density of cholinergic fiber terminals. Ninety-seven of 101 neurons recorded in whole cell configuration in rat acute slices were excited by local pressure application of nicotinic agonists, acetylcholine (500 microM), 1,1-dimethyl-4-phenyl-piperazinium (500 microM) or choline (10 mM). Biocytin labeling confirmed that our sample included different morphological types of layer I interneurons. The responses to nicotinic agonists persisted in presence of glutamate and muscarinic receptor antagonists and on further addition of Cd(2+) or tetrodotoxin, indicating that they were mediated by direct activation of postsynaptic nicotinic receptors. The kinetics of the currents and their sensitivity to nicotinic receptor antagonists, methyllycaconitine (1-10 nM) or dihydro-beta-erythroidine (500 nM), suggested that early and late components of the responses were mediated by alpha7 and non-alpha7 types of receptors. Both components had inwardly rectifying I-V curves, which differed when intracellular spermine was omitted. Single-cell RT-PCR experiments identified alpha4, alpha7, and beta2 as the predominantly expressed mRNAs, suggesting that the receptors consisted of alpha7 homomers and alpha4beta2 heteromers. Finally, selective excitation of layer I interneurons through activation of their nicotinic receptors resulted in a tetrodotoxin-sensitive increase of inhibitory synaptic currents recorded in nonpyramidal cells but not in pyramidal cells of layer II/III. These results suggest that acetylcholine released in layer I may induce a disinhibition of the cortical network through activation of nicotinic receptors expressed by layer I interneurons.


Assuntos
Interneurônios/fisiologia , Neocórtex/fisiologia , Receptores Nicotínicos/fisiologia , Animais , Eletrofisiologia , Técnicas In Vitro , Interneurônios/citologia , Neocórtex/citologia , Agonistas Nicotínicos/farmacologia , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores Nicotínicos/classificação , Receptores Nicotínicos/genética , Sinapses/efeitos dos fármacos , Receptor Nicotínico de Acetilcolina alfa7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA