Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
FASEB J ; 38(10): e23649, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38776246

RESUMO

Alternative and combinatorial splicing of myosin 18A (MYO18A) gene transcripts results in expression of MYO18A protein isoforms and isoform variants with different membrane and subcellular localizations, and functional properties. MYO18A proteins are members of the myosin superfamily consisting of a myosin-like motor domain, an IQ motif, and a coiled-coil domain. MYO18A isoforms, however, lack the ability to hydrolyze ATP and do not perform ATP-dependent motor activity. MYO18A isoforms are distinguished by different amino- and carboxy-terminal extensions and domains. The domain organization and functions of MYO18Aα, MYO18Aß, and MYO18Aγ have been studied experimentally. MYO18Aα and MYO18Aß have a common carboxy-terminal extension but differ by the presence or absence of an amino-terminal KE repeat and PDZ domain, respectively. The amino- and carboxy-terminal extensions of MYO18Aγ contain unique proline and serine-rich domains. Computationally predicted MYO18Aε and MYO18Aδ isoforms contain the carboxy-terminal serine-rich extension but differ by the presence or absence of the amino-terminal KE/PDZ extension. Additional isoform variants within each category arise by alternative utilization or inclusion/exclusion of small exons. MYO18Aα variants are expressed in somatic cells and mature immune cells, whereas MYO18Aß variants occur mainly in myeloid and natural killer cells. MYO18Aγ expression is selective to cardiac and skeletal muscle. In the present review perspective, we discuss current and emerging concepts of the functional specialization of MYO18A proteins in membrane and cytoskeletal dynamics, cellular communication and signaling, endocytic and exocytic organelle movement, viral infection, and as the SP-R210 receptor for surfactant protein A.


Assuntos
Miosinas , Isoformas de Proteínas , Humanos , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Miosinas/metabolismo , Miosinas/genética , Animais , Sistema Imunitário/metabolismo
2.
Am J Physiol Lung Cell Mol Physiol ; 326(4): L508-L513, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38349123

RESUMO

Prolonged labor can lead to infection, fetal distress, asphyxia, and life-threatening harm to both the mother and the baby. Surfactant protein A (SP-A) was shown to contribute to the maintenance of pregnancy and timing of term labor. SP-A modulates the stoichiometric expression of the SP-R210L and SP-R210S isoforms of the SP-R210 receptor on alveolar macrophages (AMs). Lack of SP-R210L dysregulates macrophage inflammatory responses. We asked whether SP-A alters normal and inflammation-induced parturition through SP-R210 using SP-A- and SP-R210L-deficient mice. Labor and delivery of time-pregnant mice were monitored in real time using a time-lapse infrared camera. Intrauterine injection with either vehicle or Escherichia coli lipopolysaccharide (LPS) on embryonic (E) day 18.5 post coitus was used to assess the effect of gene disruption in chorioamnionitis-induced labor. We report that either lack of SP-A or disruption of SP-R210L delays parturition by 0.40 and 0.55 days compared with controls, respectively. LPS induced labor at 0.60, 1.01, 0.40, 1.00, and 1.31 days earlier than PBS controls in wild type (WT), SP-A-deficient, littermate controls, heterozygous, and homozygous SP-R210L-deficient mice, respectively. Lack of SP-A reduced litter size in PBS-treated mice, whereas the total number of pups delivered was similar in all LPS-treated mice. The number of live pups, however, was significantly reduced by 50%-70% in SP-A and SP-R210L-deficient mice compared with controls. Differences in gestational length were not associated with intrauterine growth restriction. The present findings support the novel concept that the SP-A/SP-R210 pathway modulates timely labor and delivery and supports fetal lung barrier integrity during fetal-to-neonatal transition in term pregnancy.NEW & NOTEWORTHY To our knowledge, this study is the first to report that SP-A prevents delay of labor and inflammation-induced stillbirth through the receptor SP-R210L.


Assuntos
Lipopolissacarídeos , Proteína A Associada a Surfactante Pulmonar , Feminino , Gravidez , Animais , Camundongos , Lipopolissacarídeos/efeitos adversos , Proteína A Associada a Surfactante Pulmonar/genética , Proteína A Associada a Surfactante Pulmonar/metabolismo , Parto/metabolismo , Feto/metabolismo , Inflamação/metabolismo
3.
J Biol Chem ; 296: 100615, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33798555

RESUMO

Persistent high levels of proinflammatory and Th1 responses contribute to cerebral malaria (CM). Suppression of inflammatory responses and promotion of Th2 responses prevent pathogenesis. IL-4 commonly promotes Th2 responses and inhibits inflammatory and Th1 responses. Therefore, IL-4 is widely considered as a beneficial cytokine via its Th2-promoting role that is predicted to provide protection against severe malaria by inhibiting inflammatory responses. However, IL-4 may also induce inflammatory responses, as the result of IL-4 action depends on the timing and levels of its production and the tissue environment in which it is produced. Recently, we showed that dendritic cells (DCs) produce IL-4 early during malaria infection in response to a parasite protein and that this IL-4 response may contribute to severe malaria. However, the mechanism by which IL-4 produced by DCs contributing to lethal malaria is unknown. Using Plasmodium berghei ANKA-infected C57BL/6 mice, a CM model, we show here that mice lacking IL-4Rα only in CD8α+ DCs are protected against CM pathogenesis and survive, whereas WT mice develop CM and die. Compared with WT mice, mice lacking IL-4Rα in CD11c+ or CD8α+ DCs showed reduced inflammatory responses leading to decreased Th1 and cytotoxic CD8+ T cell responses, lower infiltration of CD8+ T cells to the brain, and negligible brain pathology. The novel results presented here reveal a paradoxical role of IL-4Rα signaling in CM pathogenesis that promotes CD8α+ DC-mediated inflammatory responses that generate damaging Th1 and cytotoxic CD8+ T cell responses.


Assuntos
Antígenos CD8/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Malária Cerebral/imunologia , Plasmodium berghei/imunologia , Receptores de Superfície Celular/imunologia , Transdução de Sinais/imunologia , Células Th1/imunologia , Animais , Antígenos CD8/genética , Linfócitos T CD8-Positivos/patologia , Células Dendríticas/patologia , Interleucina-4/genética , Interleucina-4/imunologia , Malária Cerebral/genética , Malária Cerebral/patologia , Camundongos , Camundongos Knockout , Plasmodium berghei/genética , Receptores de Superfície Celular/genética , Transdução de Sinais/genética , Células Th1/patologia , Células Th2/imunologia , Células Th2/patologia
4.
Am J Physiol Lung Cell Mol Physiol ; 318(4): L571-L579, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31994895

RESUMO

Inhaled granulocyte/macrophage colony-stimulating factor (GM-CSF) shows promise as a therapeutic to treat viral and bacterial pneumonia, but no mouse model of inhaled GM-CSF has been described. We sought to 1) develop a mouse model of aerosolized recombinant mouse GM-CSF administration and 2) investigate the protection conferred by inhaled GM-CSF during influenza A virus (IAV) infection against secondary bacterial infection with pneumococcus. To assess lower respiratory tract delivery of aerosolized therapeutics, mice were exposed to aerosolized fluorescein (FITC)-labeled dextran noninvasively via an aerosolization tower or invasively using a rodent ventilator. The efficiency of delivery to the lower respiratory tracts of mice was 0.01% noninvasively compared with 0.3% invasively. The airway pharmacokinetics of inhaled GM-CSF fit a two-compartment model with a terminal phase half-life of 1.3 h. To test if lower respiratory tract levels were sufficient for biological effect, mice were infected intranasally with IAV, treated with aerosolized recombinant mouse GM-CSF, and then secondarily infected with Streptococcus pneumoniae. Inhaled GM-CSF conferred a significant survival benefit to mice against secondary challenge with S. pneumoniae (P < 0.05). Inhaled GM-CSF did not reduce airway or lung parenchymal bacterial growth but significantly reduced the incidence of S. pneumoniae bacteremia (P < 0.01). However, GM-CSF overexpression during influenza virus infection did not affect lung epithelial permeability to FITC-dextran ingress into the bloodstream. Therefore, the mechanism of protection conferred by inhaled GM-CSF appears to be locally mediated improved lung antibacterial resistance to systemic bacteremia during IAV infection.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos/administração & dosagem , Pulmão/efeitos dos fármacos , Infecções por Orthomyxoviridae/tratamento farmacológico , Pneumonia Bacteriana/tratamento farmacológico , Pneumonia Pneumocócica/tratamento farmacológico , Fenômenos Fisiológicos Respiratórios/efeitos dos fármacos , Animais , Vírus da Influenza A/efeitos dos fármacos , Pulmão/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/virologia , Pneumonia Bacteriana/virologia , Pneumonia Pneumocócica/virologia
5.
Pediatr Crit Care Med ; 21(12): e1084-e1093, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33258576

RESUMO

OBJECTIVES: To identify and compare serum and lower respiratory tract fluid biomarkers of lung injury using well-characterized mouse models of lung injury. To explore the relationship between these preclinical biomarkers and clinical outcomes in a discovery cohort of pediatric patients with acute respiratory failure from pneumonia. DESIGN: Prospective, observational cohort study. SETTING: A basic science laboratory and the PICU of a tertiary-care children's hospital. PATIENTS: PICU patients intubated for respiratory failure from a suspected respiratory infection. INTERVENTIONS: Prospective enrollment and collection of lower respiratory tract fluid samples. MEASUREMENTS AND MAIN RESULTS: C57BL6/J mice were intranasally inoculated with escalating doses of influenza A virus or toll-like receptor agonists to simulate varying degrees of lung injury. Serum and bronchoalveolar lavage fluid were measured for the presence of cytokines using commercially available multiplex cytokine assays. Elevated levels of C-C motif chemokine ligand 7 at the peak of inflammation in both bronchoalveolar lavage fluid and serum correlated with lethality, with the bronchoalveolar lavage fluid ratio of C-C motif chemokine ligand 7:C-C motif chemokine ligand 22 providing the best prediction in the mouse models. These preclinical biomarkers were examined in the plasma and lower respiratory tract fluid of a discovery cohort of pediatric patients with acute respiratory failure from pneumonia. The primary clinical outcome measure was ventilator-free days, with secondary outcomes of pediatric acute respiratory distress syndrome severity and mortality. Elevation in peak lower respiratory tract fluid C-C motif chemokine ligand 7:C-C motif chemokine ligand 22 ratios demonstrated a significant negative correlation with ventilator-free days (r = -0.805; p < 0.02). CONCLUSIONS: This study provides evidence that lung immune profiling via lower respiratory tract fluid cytokine analysis is feasible and may provide insight into clinical outcomes. Further validation of markers, including the C-C motif chemokine ligand 7:C-C motif chemokine ligand 22 ratio in this limited study, in a larger cohort of patients is necessary.


Assuntos
Citocinas , Síndrome do Desconforto Respiratório , Líquido da Lavagem Broncoalveolar , Criança , Humanos , Inflamação , Estudos Prospectivos
6.
Am J Physiol Lung Cell Mol Physiol ; 317(5): L702-L716, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31553636

RESUMO

Inflammatory lung diseases affect men and women disproportionately, suggesting that fluctuations of circulating hormone levels mediate inflammatory responses. Studies have shown that ozone exposure contributes to lung injury and impairment of innate immunity with differential effects in men and women. Here, we hypothesized that 17ß-estradiol enhances inflammation and airway hyperresponsiveness (AHR), triggered by ozone exposure, in the female lung. We performed gonadectomy and hormone treatment (17ß-estradiol, 2 wk) in C57BL/6J female and male mice and exposed animals to 1 ppm of ozone or filtered air for 3 h. Twenty-four hours later, we tested lung function, inflammatory gene expression, and changes in bronchoalveolar lavage fluid (BALF). We found increased AHR and expression of inflammatory genes after ozone exposure. These changes were higher in females and were affected by gonadectomy and 17ß-estradiol treatment in a sex-specific manner. Gonadectomized male mice displayed higher AHR and inflammatory gene expression than controls exposed to ozone; 17ß-estradiol treatment did not affect this response. In females, ovariectomy reduced ozone-induced AHR, which was restored by 17ß-estradiol treatment. Ozone exposure also increased BALF lipocalin-2, which was reduced in both male and female gonadectomized mice. Treatment with 17ß-estradiol increased lipocalin-2 levels in females but lowered them in males. Gonadectomy also reduced ozone-induced expression of lung IL-6 and macrophage inflammatory protein-3 in females, which was restored by treatment with 17ß-estradiol. Together, these results indicate that 17ß-estradiol increases ozone-induced inflammation and AHR in females but not in males. Future studies examining diseases associated with air pollution exposure should consider the patient's sex and hormonal status.


Assuntos
Estradiol/farmacologia , Estrogênios/farmacologia , Pulmão/fisiopatologia , Oxidantes Fotoquímicos/toxicidade , Ozônio/toxicidade , Pneumonia/patologia , Animais , Feminino , Pulmão/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia/induzido quimicamente , Pneumonia/metabolismo , Fatores Sexuais
7.
J Biol Chem ; 292(24): 10097-10111, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28455444

RESUMO

Endocytosis, and the subsequent trafficking of endosomes, requires dynamic physical alterations in membrane shape that are mediated in part by endophilin proteins. The endophilin B family of proteins contains an N-terminal Bin/amphiphysin/Rvs (N-BAR) domain that induces membrane curvature to regulate intracellular membrane dynamics. Whereas endophilin B1 (SH3GLB1/Bif-1) is known to be involved in a number of cellular processes, including apoptosis, autophagy, and endocytosis, the cellular function of endophilin B2 (SH3GLB2) is not well understood. In this study, we used genetic approaches that revealed that endophilin B2 is not required for embryonic development in vivo but that endophilin B2 deficiency impairs endosomal trafficking in vitro, as evidenced by suppressed endosome acidification, EGFR degradation, autophagic flux, and influenza A viral RNA nuclear entry and replication. Mechanistically, although the loss of endophilin B2 did not affect endocytic internalization and lysosomal function, endophilin B2 appeared to regulate the trafficking of endocytic vesicles and autophagosomes to late endosomes or lysosomes. Moreover, we also found that despite having an intracellular localization and tissue distribution similar to endophilin B1, endophilin B2 is dispensable for mitochondrial apoptosis. Taken together, our findings suggest that endophilin B2 positively regulates the endocytic pathway in response to growth factor signaling, autophagy induction, and viral entry.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia , Proteínas de Transporte/metabolismo , Endossomos/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/agonistas , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Apoptose , Proteínas de Transporte/química , Proteínas de Transporte/genética , Linhagem Celular , Células Cultivadas , Endocitose , Endossomos/virologia , Receptores ErbB/metabolismo , Humanos , Vírus da Influenza A/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Especificidade de Órgãos , Biogênese de Organelas , Transporte Proteico , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Internalização do Vírus , Replicação Viral
8.
Respir Res ; 19(1): 3, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29304863

RESUMO

BACKGROUND: Influenza A viruses cause life-threatening pneumonia and lung injury in the lower respiratory tract. Application of high GM-CSF levels prior to infection has been shown to reduce morbidity and mortality from pathogenic influenza infection in mice, but the mechanisms of protection and treatment efficacy have not been established. METHODS: Mice were infected intranasally with influenza A virus (PR8 strain). Supra-physiologic levels of GM-CSF were induced in the airways using the double transgenic GM-CSF (DTGM) or littermate control mice starting on 3 days post-infection (dpi). Assessment of respiratory mechanical parameters was performed using the flexiVent rodent ventilator. RNA sequence analysis was performed on FACS-sorted airway macrophage subsets at 8 dpi. RESULTS: Supra-physiologic levels of GM-CSF conferred a survival benefit, arrested the deterioration of lung mechanics, and reduced the abundance of protein exudates in bronchoalveolar (BAL) fluid to near baseline levels. Transcriptome analysis, and subsequent validation ELISA assays, revealed that excess GM-CSF re-directs macrophages from an "M1-like" to a more "M2-like" activation state as revealed by alterations in the ratios of CXCL9 and CCL17 in BAL fluid, respectively. Ingenuity pathway analysis predicted that GM-CSF surplus during IAV infection elicits expression of anti-inflammatory mediators and moderates M1 macrophage pro-inflammatory signaling by Type II interferon (IFN-γ). CONCLUSIONS: Our data indicate that application of high levels of GM-CSF in the lung after influenza A virus infection alters pathogenic "M1-like" macrophage inflammation. These results indicate a possible therapeutic strategy for respiratory virus-associated pneumonia and acute lung injury.


Assuntos
Polaridade Celular/fisiologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/biossíntese , Vírus da Influenza A , Macrófagos/metabolismo , Monócitos/metabolismo , Infecções por Orthomyxoviridae/metabolismo , Animais , Feminino , Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mortalidade/tendências , Infecções por Orthomyxoviridae/mortalidade , Infecções por Orthomyxoviridae/prevenção & controle
9.
Am J Physiol Lung Cell Mol Physiol ; 309(10): L1150-63, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26342085

RESUMO

Sex differences in the incidence of respiratory diseases have been reported. Women are more susceptible to inflammatory lung disease induced by air pollution and show worse adverse pulmonary health outcomes than men. However, the mechanisms underlying these differences remain unknown. In the present study, we hypothesized that sex differences in the expression of lung inflammatory mediators affect sex-specific immune responses to environmental toxicants. We focused on the effects of ground-level ozone, a major air pollutant, in the expression and regulation of lung immunity genes. We exposed adult male and female mice to 2 ppm of ozone or filtered air (control) for 3 h. We compared mRNA levels of 84 inflammatory genes in lungs harvested 4 h postexposure using a PCR array. We also evaluated changes in lung histology and bronchoalveolar lavage fluid cell counts and protein content at 24 and 72 h postexposure. Our results revealed sex differences in lung inflammation triggered by ozone exposure and in the expression of genes involved in acute phase and inflammatory responses. Major sex differences were found in the expression of neutrophil-attracting chemokines (Ccl20, Cxcl5, and Cxcl2), the proinflammatory cytokine interleukin-6, and oxidative stress-related enzymes (Ptgs2, Nos2). In addition, the phosphorylation of STAT3, known to mediate IL-6-related immune responses, was significantly higher in ozone-exposed mice. Together, our observations suggest that a differential regulation of the lung immune response could be implicated in the observed increased susceptibility to adverse health effects from ozone observed in women vs. men.


Assuntos
Poluentes Atmosféricos/toxicidade , Mediadores da Inflamação/metabolismo , Pulmão/metabolismo , Ozônio/toxicidade , Pneumonia/metabolismo , Animais , Permeabilidade Capilar , Feminino , Interleucinas/genética , Interleucinas/metabolismo , Pulmão/imunologia , Pulmão/patologia , Masculino , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos , Estresse Oxidativo , Pneumonia/induzido quimicamente , Pneumonia/imunologia , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/metabolismo , Fator de Transcrição STAT3/metabolismo , Caracteres Sexuais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
10.
Exp Lung Res ; 40(7): 354-66, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25058539

RESUMO

Human surfactant protein A (SP-A) plays an important role in surfactant metabolism and lung innate immunity. SP-A is synthesized and secreted by alveolar type II (ATII) cells, one of the two cell types of the distal lung epithelium (ATII and ATI). We have shown that miRNA interactions with sequence polymorphisms on the SP-A mRNA 3'UTRs mediate differential expression of SP-A1 and SP-A2 gene variants in vitro. In the present study, we describe a physiologically relevant model to study miRNA regulation of SP-A in human ATII. For these studies, we purified and cultured human ATII on an air-liquid interface matrix (A/L) or plastic wells without matrix (P). Gene expression analyses confirmed that cells cultured in A/L maintained the ATII phenotype for over 5 days, whereas P-cultured cells differentiated to ATI. When we transfected ATII with siRNAs to inhibit the expression of Drosha, a critical effector of miRNA maturation, the levels of SP-A mRNA and protein increased in a time dependent manner. We next characterized cultured ATII and ATI by studying expression of 1,066 human miRNAs using miRNA PCR arrays. We detected expression of >300 miRNAs with 24 miRNAs differentially expressed in ATII versus ATI, 12 of which predicted to bind SP-A 3'UTRs, indicating that these may be implicated in SP-A downregulation in ATI. Thus, miRNAs not only affect SP-A expression, but also may contribute to the maintenance of the ATII cell phenotype and/or the trans-differentiation of ATII to ATI cells, and may represent new molecular markers that distinguish ATII and ATI.


Assuntos
Alvéolos Pulmonares/metabolismo , Proteína A Associada a Surfactante Pulmonar/genética , Proteína A Associada a Surfactante Pulmonar/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo , Regiões 3' não Traduzidas/genética , Diferenciação Celular/genética , Células Cultivadas , Células Epiteliais/metabolismo , Epitélio/metabolismo , Humanos , MicroRNAs/genética , Fenótipo , Projetos Piloto , RNA Mensageiro/genética , RNA Interferente Pequeno/genética
11.
Microbes Infect ; 26(3): 105280, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38135024

RESUMO

Influenza A virus (IAV) infection causes acute and often lethal inflammation in the lung. The role of macrophages in this adverse inflammation is partially understood. The surfactant protein A receptor 210 (SP-R210) consists of two isoforms, a long (L) SP-R210L and a short (S) SP-R210S isoform encoded by alternative splicing of the myosin 18A gene. We reported that disruption of SP-R210L enhances cytosolic and endosomal antiviral response pathways. Here, we report that SP-R210L antagonizes type I interferon ß (IFNß), as depletion of SP-R210L potentiates IFNß secretion. SP-R210 antibodies enhance and attenuate IFNß secretion in SP-R210L replete and deficient macrophages, respectively, indicating that SP-R210 isoform stoichiometry alters macrophage function intrinsically. This reciprocal response is coupled to unopposed and restricted expression of viral genes in control and SP-R210L-deficient macrophages, respectively. Human monocytic cells with sub-stoichiometric expression of SP-R210L resist IAV infection, whereas alveolar macrophages with increased abundance of SP-R210L permit viral gene expression similar to murine macrophages. Uptake and membrane binding studies show that lack of SP-R210 isoforms does not impair IAV binding and internalization. Lack of SP-R210L, however, results in macropinocytic retention of the virus that depends on both SP-R210S and interferon-inducible transmembrane protein-3 (IFITM3). Mass spectrometry and Western blot analyses indicate that SP-R210 isoforms modulate differential recruitment of the Rho-family GTPase RAC1 and guanine nucleotide exchange factors. Our study suggests that SP-R210 isoforms modulate RAC-dependent macropinosomal sorting of IAV to discrete endosomal and lysosomal compartments that either permit or prevent endolysosomal escape and inflammatory sensing of viral genomes in macrophages.


Assuntos
Vírus da Influenza A , Influenza Humana , Camundongos , Humanos , Animais , Macrófagos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Vírus da Influenza A/fisiologia , Inflamação/metabolismo , Miosinas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
12.
Intensive Care Med Exp ; 11(1): 70, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37831231

RESUMO

BACKGROUND: Sepsis is characterized by highly heterogeneous immune responses associated with a spectrum of disease severity. Methods that rapidly and sensitively profile these immune responses can potentially personalize immune-adjuvant therapies for sepsis. We hypothesized that the ELLA microfluidic approach to measure cytokine production from the whole blood of septic and critically ill patients would deliver faster, more precise results than the existing optic-driven ELISpot quantification. We tested our hypothesis by measuring ex vivo-stimulated production of TNF and IFNγ in critically ill and septic patients (n = 22), critically ill and non-septic patients (n = 10), and healthy volunteers (n = 10) through both ELLA and ELISpot immunoassays. Blood samples were subjected to one of three stimulants for 4 h or 18 h durations during days 1, 7-10, and 14 of critical illness. Stimulants for lymphocytes included anti-CD3/anti-CD28 and phorbol 12-myristate 13-acetate (PMA), whereas LPS was used for monocytes. Stimulated TNF and IFNγ concentrations were then associated with 30-day mortality. RESULTS: Both ELISpot and ELLA immunoassays showed substantial agreement in TNF concentrations post 4 h and 18 h LPS stimulation, with concordance correlation coefficients at 0.62 and 0.60, respectively. ELLA had a broad dynamic measurement range and provided accurate TNF and IFNγ readings at both minimal and elevated cytokine concentrations (with mean coefficients of variation between triplicate readings at 2.1 ± 1.4% and 4.9 ± 7.2%, respectively). However, there was no association between the ELLA-determined cytokine concentrations on the first day of critical illness and 30-day mortality rate. In contrast, using the ELISpot for cytokine quantification revealed that non-survivors had reduced baseline TNF levels at 18 h, decreased LPS-induced TNF levels at 18 h, and diminished TNF levels post 4 h/18 h anti-CD3/28 stimulation. CONCLUSIONS: Our study affirms the feasibility of obtaining dependable immune phenotyping data within 6 h of blood collection from critically ill patients, both septic and non-septic, using the ELLA immunoassay. Both ELLA and ELISpot can offer valuable insights into prognosis, therapeutic strategies, and the underlying mechanisms of sepsis development.

13.
Front Immunol ; 14: 919800, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36960051

RESUMO

Influenza A virus infection (IAV) often leads to acute lung injury that impairs breathing and can lead to death, with disproportionate mortality in children and the elderly. Surfactant Protein A (SP-A) is a calcium-dependent opsonin that binds a variety of pathogens to help control pulmonary infections by alveolar macrophages. Alveolar macrophages play critical roles in host resistance and susceptibility to IAV infection. The effect of SP-A on IAV infection and antiviral response of macrophages, however, is not understood. Here, we report that SP-A attenuates IAV infection in a dose-dependent manner at the level of endosomal trafficking, resulting in infection delay in a model macrophage cell line. The ability of SP-A to suppress infection was independent of its glycosylation status. Binding of SP-A to hemagglutinin did not rely on the glycosylation status or sugar binding properties of either protein. Incubation of either macrophages or IAV with SP-A slowed endocytic uptake rate of IAV. SP-A interfered with binding to cell membrane and endosomal exit of the viral genome as indicated by experiments using isolated cell membranes, an antibody recognizing a pH-sensitive conformational epitope on hemagglutinin, and microscopy. Lack of SP-A in mice enhanced IFNß expression, viral clearance and reduced mortality from IAV infection. These findings support the idea that IAV is an opportunistic pathogen that co-opts SP-A to evade host defense by alveolar macrophages. Our study highlights novel aspects of host-pathogen interactions that may lead to better understanding of the local mechanisms that shape activation of antiviral and inflammatory responses to viral infection in the lung.


Assuntos
Vírus da Influenza A , Macrófagos , Infecções por Orthomyxoviridae , Proteína A Associada a Surfactante Pulmonar , Animais , Camundongos , Hemaglutininas , Macrófagos/imunologia , Macrófagos/virologia , Proteína A Associada a Surfactante Pulmonar/imunologia , Infecções por Orthomyxoviridae/imunologia
14.
J Biol Chem ; 286(6): 4854-70, 2011 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-21123169

RESUMO

Staphylococcus aureus causes life-threatening pneumonia in hospitals and deadly superinfection during viral influenza. The current study investigated the role of surfactant protein A (SP-A) in opsonization and clearance of S. aureus. Previous studies showed that SP-A mediates phagocytosis via the SP-A receptor 210 (SP-R210). Here, we show that SP-R210 mediates binding and control of SP-A-opsonized S. aureus by macrophages. We determined that SP-A binds S. aureus through the extracellular adhesin Eap. Consequently, SP-A enhanced macrophage uptake of Eap-expressing (Eap(+)) but not Eap-deficient (Eap(-)) S. aureus. In a reciprocal fashion, SP-A failed to enhance uptake of Eap(+) S. aureus in peritoneal Raw264.7 macrophages with a dominant negative mutation (SP-R210(DN)) blocking surface expression of SP-R210. Accordingly, WT mice cleared infection with Eap(+) but succumbed to sublethal infection with Eap- S. aureus. However, SP-R210(DN) cells compensated by increasing non-opsonic phagocytosis of Eap(+) S. aureus via the scavenger receptor scavenger receptor class A (SR-A), while non-opsonic uptake of Eap(-) S. aureus was impaired. Macrophages express two isoforms: SP-R210(L) and SP-R210(S). The results show that WT alveolar macrophages are distinguished by expression of SP-R210(L), whereas SR-A(-/-) alveolar macrophages are deficient in SP-R210(L) expressing only SP-R210(S). Accordingly, SR-A(-/-) mice were highly susceptible to both Eap(+) and Eap(-) S. aureus. The lungs of susceptible mice generated abnormal inflammatory responses that were associated with impaired killing and persistence of S. aureus infection in the lung. In conclusion, alveolar macrophage SP-R210(L) mediates recognition and killing of SP-A-opsonized S. aureus in vivo, coordinating inflammatory responses and resolution of S. aureus pneumonia through interaction with SR-A.


Assuntos
Adesinas Bacterianas/metabolismo , Macrófagos Alveolares/metabolismo , Macrófagos Peritoneais/metabolismo , Pneumonia Estafilocócica/metabolismo , Proteína A Associada a Surfactante Pulmonar/metabolismo , Receptores de Superfície Celular/metabolismo , Staphylococcus aureus/metabolismo , Adesinas Bacterianas/genética , Animais , Células COS , Chlorocebus aethiops , Humanos , Pulmão/metabolismo , Camundongos , Camundongos Knockout , Fagocitose/fisiologia , Pneumonia Estafilocócica/genética , Proteína A Associada a Surfactante Pulmonar/genética , Receptores de Superfície Celular/genética , Staphylococcus aureus/genética
15.
Am J Respir Crit Care Med ; 184(2): 259-68, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21474645

RESUMO

RATIONALE: Alveolar macrophages contribute to host defenses against influenza in animal models. Enhancing alveolar macrophage function may contribute to protection against influenza. OBJECTIVES: To determine if increased expression of granulocyte/macrophage colony-stimulating factor (GM-CSF) in the lung increases resistance to influenza. METHODS: Wild-type mice and transgenic mice that expressed GM-CSF in the lung were infected with influenza virus, and lung pathology, weight loss, and mortality were measured. We also administered GM-CSF to the lungs of wild-type mice that were infected with influenza virus. MEASUREMENTS AND MAIN RESULTS: Wild-type mice all died after infection with different strains of influenza virus, but all transgenic mice expressing GM-CSF in the lungs survived. The latter also had greatly reduced weight loss and lung injury, and showed histologic evidence of a rapid host inflammatory response that controlled infection. The resistance of transgenic mice to influenza was abrogated by elimination of alveolar phagocytes, but not by depletion of T cells, B cells, or neutrophils. Transgenic mice had far more alveolar macrophages than did wild-type mice, and they were more resistant to influenza-induced apoptosis. Delivery of intranasal GM-CSF to wild-type mice also conferred resistance to influenza. CONCLUSIONS: GM-CSF confers resistance to influenza by enhancing innate immune mechanisms that depend on alveolar macrophages. Pulmonary delivery of this cytokine has the potential to reduce the morbidity and mortality due to influenza virus.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Administração Intranasal , Animais , Apoptose/imunologia , Modelos Animais de Doenças , Citometria de Fluxo , Pulmão/imunologia , Macrófagos Alveolares/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Redução de Peso/imunologia
16.
Front Immunol ; 13: 940030, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860253

RESUMO

Background: Cell-based functional immune-assays may allow for risk stratification of patients with complex, heterogeneous immune disorders such as sepsis. Given the heterogeneity of patient responses and the uncertain immune pathogenesis of sepsis, these assays must first be defined and calibrated in the healthy population. Objective: Our objective was to compare the internal consistency and practicality of two immune assays that may provide data on surrogate markers of the innate and adaptive immune response. We hypothesized that a rapid turnaround, microfluidic-based immune assay (ELLA) would be comparable to a dual-color, enzyme-linked immunospot (ELISpot) assay in identifying tumor necrosis factor (TNF) and interferon (IFN)γ production following ex vivo whole blood stimulation. Design: This was a prospective, observational cohort analysis. Whole blood samples from ten healthy, immune-competent volunteers were stimulated for either 4 hours or 18 hours with lipopolysaccharide, anti-CD3/anti-CD28 antibodies, or phorbol 12-myristate 13-acetate with ionomycin to interrogate innate and adaptive immune responses, respectively. Measurements and Main Results: ELLA analysis produced more precise measurement of TNF and IFNγ concentrations as compared with ELISpot, as well as a four- to five-log10 dynamic range for TNF and IFNγ concentrations, as compared with a two-log10 dynamic range with ELISpot. Unsupervised clustering accurately predicted the ex vivo immune stimulant used for 90% of samples analyzed via ELLA, as compared with 72% of samples analyzed via ELISpot. Conclusions: We describe, for the first time, a rapid and precise assay for functional interrogation of the innate and adaptive arms of the immune system in healthy volunteers. The advantages of the ELLA microfluidic platform may represent a step forward in generating a point-of-care test with clinical utility, for identifying deranged immune phenotypes in septic patients.


Assuntos
Citocinas , Sepse , ELISPOT , Humanos , Interferon gama , Estudos Prospectivos , Sepse/diagnóstico , Acetato de Tetradecanoilforbol , Fator de Necrose Tumoral alfa
17.
PLoS One ; 17(8): e0272769, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35947545

RESUMO

INTRODUCTION: Despite recent advances in perinatal medicine, bronchopulmonary dysplasia (BPD) remains the most common complication of preterm birth. Inflammation, the main cause for BPD, results in arrested alveolarization. All trans-retinoic acid (ATRA), the active metabolite of Vitamin A, facilitates recovery from hyperoxia induced cell damage. The mechanisms involved in this response, and the genes activated, however, are poorly understood. In this study, we investigated the mechanisms of action of ATRA in human lung epithelial cells exposed to hyperoxia. We hypothesized that ATRA reduces hyperoxia-induced inflammatory responses in A549 alveolar epithelial cells. METHODS: A549 cells were exposed to hyperoxia with or without treatment with ATRA, followed by RNA-seq analysis. RESULTS: Transcriptomic analysis of A549 cells revealed ~2,000 differentially expressed genes with a higher than 2-fold change. Treatment of cells with ATRA alleviated some of the hyperoxia-induced changes, including Wnt signaling, cell adhesion and cytochrome P450 genes, partially through NF-κB signaling. DISCUSSION/CONCLUSION: Our findings support the idea that ATRA supplementation may decrease hyperoxia-induced disruption of the neonatal respiratory epithelium and alleviate development of BPD.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Nascimento Prematuro , Células Epiteliais Alveolares/metabolismo , Animais , Animais Recém-Nascidos , Displasia Broncopulmonar/complicações , Displasia Broncopulmonar/etiologia , Feminino , Humanos , Hiperóxia/metabolismo , Recém-Nascido , Pulmão/metabolismo , NF-kappa B/metabolismo , Gravidez , Nascimento Prematuro/metabolismo , Tretinoína/metabolismo , Tretinoína/farmacologia , Via de Sinalização Wnt
18.
PLoS One ; 17(3): e0265241, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35286340

RESUMO

INTRODUCTION: Because of the strong correlation between the blood concentration of circulating resistin and the illness severity of septic patients, resistin has been proposed as a mediator of sepsis pathophysiology. In vitro data indicate that human resistin directly impairs neutrophil migration and intracellular bacterial killing, although the significance of these findings in vivo remain unclear. OBJECTIVE: The objectives of the present study were: (1) to validate the expression of human resistin in a clinically relevant, murine model of surgical sepsis, (2) to assess how sepsis-induced changes in resistin correlate with markers of infection and organ dysfunction, and (3) to investigate whether the expression of human resistin alters immune function or disease outcomes in vivo. METHODS: 107 male, C57BL/6 mice transgenic for the human resistin gene and its promoter elements (Retn+/-/-, or Retn+) were generated on a Retn-/- (mouse resistin knockout, or Rko) background. Outcomes were compared between age-matched transgenic and knockout mice. Acute sepsis was defined as the initial 24 h following cecal ligation and puncture (CLP). Physiologic and laboratory parameters correlating to the human Sequential Organ Failure Assessment (SOFA) Score were measured in mice, and innate immune cell number/function in the blood and peritoneal cavity were assessed. RESULTS: CLP significantly increased circulating levels of human resistin. The severity of sepsis-induced leukopenia was comparable between Retn+ and Rko mice. Resistin was associated with increased production of neutrophil reactive oxygen species, a decrease in circulating neutrophils at 6 h and an increase in peritoneal Ly6Chi monocytes at 6 h and 24 h post-sepsis. However, intraperitoneal bacterial growth, organ dysfunction and mouse survival did not differ with resistin production in septic mice. SIGNIFICANCE: Ex vivo resistin-induced impairment of neutrophil function do not appear to translate to increased sepsis severity or poorer outcomes in vivo following CLP.


Assuntos
Resistina , Sepse , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Insuficiência de Múltiplos Órgãos/metabolismo , Neutrófilos/metabolismo , Resistina/genética , Resistina/metabolismo
19.
Immunohorizons ; 5(1): 2-15, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446493

RESUMO

Genome-wide association studies identified variants in the transcription factor STAT4 gene and several other genes in the STAT4 signaling pathway, such as IL12A, IL12B, JAK2, and TYK2, which are associated with an increased risk of developing systemic lupus erythematosus (SLE) and other autoimmune diseases. Consistent with the genome-wide association studies data, STAT4 was shown to play an important role in autoimmune responses and autoimmunity development in SLE mouse models. Despite such important role for STAT4 in SLE development in mice and humans, little is known whether and how STAT4 may regulate extrafollicular Ab-forming cell (AFC) and follicular germinal center (GC) responses, two major pathways of autoreactive B cell development and autoantibody production. To our surprise, we found STAT4 to be largely dispensable for promoting autoimmune AFC and GC responses in various autoimmune- and SLE-prone mouse models, which strongly correlated with autoantibody production, and immune complex deposition and immune cell infiltration in the kidney. We further observed that STAT4 deficiency had no effects on AFC, GC, and Ag-specific Ab responses during protein Ag immunization or influenza virus infection. Additionally, CD4+ effector and follicular Th cell responses in autoimmune- and SLE-prone mice and protein Ag-immunized and influenza virus-infected mice were intact in the absence of STAT4. Together, our data demonstrate a largely dispensable role for STAT4 in AFC, GC, and Ab responses in SLE mouse models and in certain foreign Ag-driven responses.


Assuntos
Linfócitos B/imunologia , Centro Germinativo/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , Fator de Transcrição STAT4/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Autoanticorpos/sangue , Autoantígenos/imunologia , Autoimunidade , Modelos Animais de Doenças , Estudo de Associação Genômica Ampla , Lúpus Eritematoso Sistêmico/genética , Camundongos , Camundongos Endogâmicos C57BL , Fator de Transcrição STAT4/genética
20.
Immunobiology ; 226(6): 152150, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34735924

RESUMO

Macrophages play an important role in maintaining tissue homeostasis, from regulating the inflammatory response to pathogens to resolving inflammation and aiding tissue repair. The surfactant protein A (SP-A) receptor SP-R210 (MYO18A) has been shown to affect basal and inflammatory macrophage states. Specifically, disruption of the longer splice isoform SP-R210L/MYO18Aα renders macrophages hyper-inflammatory, although the mechanism by which this occurs is not well understood. We asked whether disruption of the L isoform led to the hyper-inflammatory state via alteration of global genomic responses. RNA sequencing analysis of L isoform-deficient macrophages (SP-R210L(DN)) revealed basal and influenza-induced upregulation of genes associated with inflammatory pathways, such as TLR, RIG-I, NOD, and cytoplasmic DNA signaling, whereas knockout of both SP-R210 isoforms (L and S) only resulted in increased RIG-I and NOD signaling. Chromatin immunoprecipitation sequencing (ChIP-seq) analysis showed increased genome-wide deposition of the pioneer transcription factor PU.1 in SP-R210L(DN) cells, with increased representation around genes relevant to inflammatory pathways. Additional ChIP-seq analysis of histone H3 methylation marks showed decreases in both repressive H3K9me3 and H3K27me3 marks with a commensurate increase in transcriptionally active (H3K4me3) histone marks in the L isoform deficient macrophages. Influenza A virus (IAV) infection, known to stimulate a wide array of anti-viral responses, caused a differential redistribution of PU.1 binding between proximal promoter and distal sites and decoupling from Toll-like receptor regulated gene promoters in SP-R210L(DN) cells. These finding suggest that the inflammatory differences seen in SP-R210L-deficient macrophages are a result of transcriptional differences that are mediated by epigenetic changes brought about by differential expression of the SP-R210 isoforms. This provides an avenue to explore how the signaling pathways downstream of the receptor and the ligands can modulate the macrophage inflammatory response.


Assuntos
Adaptação Biológica/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Miosinas/genética , Animais , Biomarcadores , Linhagem Celular , Suscetibilidade a Doenças/imunologia , Epigenômica/métodos , Genômica/métodos , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Imunofenotipagem , Camundongos , Miosinas/deficiência , Isoformas de Proteínas , Células RAW 264.7 , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA