Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(34): e202406576, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38828829

RESUMO

Oriented synthesis of functional materials is a focus of attention in material science. As one of the most important function materials, infrared nonlinear optical materials with large second harmonic generation effects and broad optical band gap are in urgent need. In this work, directed by the theoretical structure prediction, the first series of non-centrosymmetric (NCS) alkali-alkaline earth metal [PS4]-based thiophosphates LiCaPS4 (Ama2), NaCaPS4 (P21), KCaPS4 (Pna21), RbCaPS4 (Pna21), CsCaPS4 (Pna21) were successfully synthesized. Comprehensive characterizations reveal that ACaPS4 could be regarded as promising IR NLO materials, exhibiting wide band gap (3.77-3.86 eV), moderate birefringence (0.027-0.064 at 1064 nm), high laser-induced damage threshold (LIDT, ~10×AGS), and suitable phase-matching second harmonic generation responses (0.4-0.6×AGS). Structure-properties analyses illustrate that the Ca-S bonds show non-ignorable covalent feature, and [PS4] together with [CaSn] units play dominant roles to determine the band gap and SHG response. This work indicates that Li-, Na- and K- analogs may be promising infrared nonlinear optical material candidates, and this is the first successful case of "prediction to synthesis" involving infrared (IR) nonlinear optical (NLO) crystals in the thiophosphate system and may provide a new avenue to the design and oriented synthesis of high-performance function materials in the future.

2.
Angew Chem Int Ed Engl ; : e202413680, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143747

RESUMO

Deep-ultraviolet (UV) birefringent materials are urgently needed to facilitate light polarization in deep-UV lithography. Maximizing anisotropy by regulating the alignment of functional modules is essential for improving the linear optical performance of birefringent materials. In this work, we proposed a strategy to design deep-UV birefringent materials that achieve functional module ordering via weak interactions. Following this strategy, four compounds CN4H7SO3CF3, CN4H7SO3CH3, C(NH2)3SO3CH3, and C(NH2)3SO3CF3 were identified as high-performance candidates for deep-UV birefringent materials. The millimeter-sized crystals of CN4H7SO3CF3, CN4H7SO3CH3, and C(NH2)3SO3CH3 were grown, and the transmittance spectra show that their cutoff edges are below 200 nm. CN4H7SO3CF3 exhibits the largest birefringence (0.149 @ 546 nm, 0.395 @ 200 nm) in the deep-UV region among reported sulfates and sulfate derivatives. It reveals that the hydrogen bond can modulate the module ordering of the heteroleptic tetrahedra and planar π-conjugated cations, thus greatly enhancing the birefringence. Our study not only discovers new deep-UV birefringent materials but also provides an upgraded strategy for optimizing optical anisotropy to achieve efficient birefringence.

3.
Pediatr Surg Int ; 40(1): 26, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38133659

RESUMO

PURPOSE: To investigate the correlation between postoperative feeding intolerance and defecation, with a view to carrying out prognostic assessment and timely intervention for the recovery of postoperative gastrointestinal function. METHODS: The 114 neonates with congenital intestinal atresia who underwent primary anastomosis admitted to Shenzhen Children's Hospital from January 2014 to December 2022 were studied, and the patients' basic information, intraoperative conditions, postoperative feeding and defecation, and hospitalization time were retrospectively analyzed. RESULTS: The risk factors for feeding intolerance after primary anastomosis for intestinal atresia are the gestational days, the time of the first postoperative defecations, the number of defecations on the previous day and the average number of defecations before feeding. CONCLUSION: The incidence of postoperative feeding intolerance is higher in preterm infants, and pediatricians can decide the timing of breastfeeding on the basis of the patients' defecation. The focus on accurate defecation may be more meaningful in determining and predicting postoperative feeding intolerance in the infants.


Assuntos
Doenças do Recém-Nascido , Atresia Intestinal , Lactente , Criança , Feminino , Recém-Nascido , Humanos , Recém-Nascido Prematuro , Defecação , Atresia Intestinal/cirurgia , Estudos Retrospectivos , Anastomose Cirúrgica/efeitos adversos
4.
Chem Sci ; 15(17): 6577-6582, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38699258

RESUMO

Infrared (IR) nonlinear optical (NLO) materials with strong NLO response, wide band gap and high laser-induced damage threshold (LIDT) are highly expected in current laser technologies. Herein, by introducing double alkaline-earth metal (AEM) atoms, three wide band gap selenide IR NLO materials AIIMg6Ga6Se16 (AII = Ca, Sr, Ba) with excellent linear and NLO optical properties have been rationally designed and fabricated. AIIMg6Ga6Se16 (AII = Ca, Sr, Ba) are composed of unique [AIISe6] triangular prisms, [MgSe6] octahedra and [GaSe4] tetrahedra. The introduction of double AEMs effectively broadens the band gaps of selenide-based IR NLO materials. Among them, CaMg6Ga6Se16, achieving the best balance between the second-harmonic generation response (∼1.5 × AgGaS2), wide band gap (2.71 eV), high LIDT (∼9 × AgGaS2), and moderate birefringence of 0.052 @ 1064 nm, is a promising NLO candidate for high power IR laser. Theoretical calculations indicate that the NLO responses and band gaps among the three compounds are mainly determined by the NLO-active [GaSe4] units. The results enrich the chemical diversity of chalcogenides, and give some insight into the design of new functional materials based on the rare [AIISe6] prismatic units.

5.
Dalton Trans ; 53(3): 866-871, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38099922

RESUMO

Designing wide-bandgap chalcogenides is one of the most important ways of obtaining high-performance infrared (IR) functional materials. In this work, two Mg-based metal thiophosphates, namely Na6Mg3P4S16 (NMPS) and RbMg2PS4Cl2 (RMPSC), were successfully obtained by introducing [MgS6] and [MgSxCl6-x] octahedra into thiophosphates. In addition, their crystal structures were determined, a first for Mg-containing [PS4]-based thiophosphates to the best of our knowledge. Their bandgaps were investigated in theoretical ways and verified by taking experimental measurements, and determined to be 3.80 eV for NMPS and 3.93 eV for RMPSC, values greater than those of the other investigated thiophosphate halides. The wide bandgaps of NMPS and RMPSC were attributed, based on theoretical calculations, to the [MgSxCl6-x] (x = 0-6) octahedron.

6.
ACS Appl Mater Interfaces ; 16(28): 36658-36666, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38976617

RESUMO

Modern crystal structure prediction methods based on structure generation algorithms and first-principles calculations play important roles in the design of new materials. However, the cost of these methods is very expensive because their success mostly relies on the efficient sampling of structures and the accurate evaluation of energies for those sampled structures. Herein, we develop a Machine-learning-Assisted CRYStalline Materials sAmpling sysTem (MAXMAT) aiming to accelerate the prediction of new crystal structures. For a given chemical composition, MAXMAT can generate efficient crystal structures with the help of a Python package for crystal structure generation (PyXtal) and can quickly evaluate the energies of these generated structures using a well-developed machine learning interaction potential model (M3GNET). We have used MAXMAT to perform crystal structure searches for three different chemical systems (TiO2, MgAl2O4, and BaBOF3) to test its accuracy and efficiency. Furthermore, we apply MAXMAT to predict new nonlinear optical materials, suggesting several thermodynamically synthesizable structures with high performance in LiZnGaS3 and CaBOF3 systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA