Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 141(4): 044709, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-25084939

RESUMO

We have investigated the group 14 nitrides (M3N4) in the spinel phase (γ-M3N4 with M = C, Si, Ge, and Sn) and ß phase (ß-M3N4 with M = Si, Ge, and Sn) using density functional theory with the local density approximation and the GW approximation. The Kohn-Sham energies of these systems have been first calculated within the framework of full-potential linearized augmented plane waves (LAPW) and then corrected using single-shot G0W0 calculations, which we have implemented in the modified version of the Elk full-potential LAPW code. Direct band gaps at the Γ point have been found for spinel-type nitrides γ-M3N4 with M = Si, Ge, and Sn. The corresponding GW-corrected band gaps agree with experiment. We have also found that the GW calculations with and without the plasmon-pole approximation give very similar results, even when the system contains semi-core d electrons. These spinel-type nitrides are novel materials for potential optoelectronic applications because of their direct and tunable band gaps.

2.
Nat Commun ; 9(1): 3800, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30228262

RESUMO

Predicting the stability of crystals is one of the central problems in materials science. Today, density functional theory (DFT) calculations remain comparatively expensive and scale poorly with system size. Here we show that deep neural networks utilizing just two descriptors-the Pauling electronegativity and ionic radii-can predict the DFT formation energies of C3A2D3O12 garnets and ABO3 perovskites with low mean absolute errors (MAEs) of 7-10 meV atom-1 and 20-34 meV atom-1, respectively, well within the limits of DFT accuracy. Further extension to mixed garnets and perovskites with little loss in accuracy can be achieved using a binary encoding scheme, addressing a critical gap in the extension of machine-learning models from fixed stoichiometry crystals to infinite universe of mixed-species crystals. Finally, we demonstrate the potential of these models to rapidly transverse vast chemical spaces to accurately identify stable compositions, accelerating the discovery of novel materials with potentially superior properties.

3.
ACS Appl Mater Interfaces ; 10(12): 10076-10086, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29528620

RESUMO

In this work, we investigated the interface between the sodium anode and the sulfide-based solid electrolytes Na3SbS4 (NAS), Na3PS4 (NPS), and Cl-doped NPS (NPSC) in all-solid-state-batteries (ASSBs). Even though these electrolytes have demonstrated high ionic conductivities in the range of 1 mS cm-1 at ambient temperatures, sulfide sold-state electrolytes (SSEs) are known to be unstable with Na metal, though the exact reaction mechanism and kinetics of the reaction remain unclear. We demonstrate that the primary cause of capacity fade and cell failure is a chemical reaction spurred on by electrochemical cycling that takes place at the interface between the Na anode and the SSEs. To investigate the properties of the Na-solid electrolyte interphase (SSEI) and its effect on cell performance, the SSEI was predicted computationally to be composed of Na2S and Na3Sb for NAS and identified experimentally via X-ray photoelectron spectroscopy (XPS). These two compounds give the SSEI mixed ionic- and electronic-conducting properties, which promotes continued SSEI growth, which increases the cell impedance at the expense of cell performance and cycle life. The SSEI for NPS was similarly found to be comprised of Na2S and Na3P, but XPS analysis of Cl-doped NPS (NPSC) showed the presence of an additional compound at the SSEI, NaCl, which was found to mitigate the decomposition of NPS. The methodologies presented in this work can be used to predict and optimize the electrochemical behavior of an all-solid-state cell. Such joint computational and experimental efforts can inform strategies for engineering a stable electrolyte and SSEI to avoid such reactions. Through this work, we call for more emphasis on SSE compatibility with both anodes and cathodes, essential for improving the electrochemical properties, longevity, and practicality of Na-based ASSBs.

4.
ACS Appl Mater Interfaces ; 8(12): 7843-53, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26950604

RESUMO

The Li7P3S11 glass-ceramic is a promising superionic conductor electrolyte (SCE) with an extremely high Li(+) conductivity that exceeds that of even traditional organic electrolytes. In this work, we present a combined computational and experimental investigation of the material performance limitations in terms of its phase and electrochemical stability, and Li(+) conductivity. We find that Li7P3S11 is metastable at 0 K but becomes stable at above 630 K (∼360 °C) when vibrational entropy contributions are accounted for, in agreement with differential scanning calorimetry measurements. Both scanning electron microscopy and the calculated Wulff shape show that Li7P3S11 tends to form relatively isotropic crystals. In terms of electrochemical stability, first-principles calculations predict that, unlike the LiCoO2 cathode, the olivine LiFePO4 and spinel LiMn2O4 cathodes are likely to form stable passivation interfaces with the Li7P3S11 SCE. This finding underscores the importance of considering multicomponent integration in developing an all-solid-state architecture. To probe the fundamental limit of its bulk Li(+) conductivity, a comparison of conventional cold-press sintered versus spark-plasma sintering (SPS) Li7P3S11 was done in conjunction with ab initio molecular dynamics (AIMD) simulations. Though the measured diffusion activation barriers are in excellent agreement, the AIMD-predicted room-temperature Li(+) conductivity of 57 mS cm(-1) is much higher than the experimental values. The optimized SPS sample exhibits a room-temperature Li(+) conductivity of 11.6 mS cm(-1), significantly higher than that of the cold-pressed sample (1.3 mS cm(-1)) due to the reduction of grain boundary resistance by densification. We conclude that grain boundary conductivity is limiting the overall Li(+) conductivity in Li7P3S11, and further optimization of overall conductivities should be possible. Finally, we show that Li(+) motions in this material are highly collective, and the flexing of the P2S7 ditetrahedra facilitates fast Li(+) diffusion.

5.
Sci Rep ; 6: 33733, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27645565

RESUMO

All-solid-state sodium-ion batteries are promising candidates for large-scale energy storage applications. The key enabler for an all-solid-state architecture is a sodium solid electrolyte that exhibits high Na(+) conductivity at ambient temperatures, as well as excellent phase and electrochemical stability. In this work, we present a first-principles-guided discovery and synthesis of a novel Cl-doped tetragonal Na3PS4 (t-Na3-xPS4-xClx) solid electrolyte with a room-temperature Na(+) conductivity exceeding 1 mS cm(-1). We demonstrate that an all-solid-state TiS2/t-Na3-xPS4-xClx/Na cell utilizing this solid electrolyte can be cycled at room-temperature at a rate of C/10 with a capacity of about 80 mAh g(-1) over 10 cycles. We provide evidence from density functional theory calculations that this excellent electrochemical performance is not only due to the high Na(+) conductivity of the solid electrolyte, but also due to the effect that "salting" Na3PS4 has on the formation of an electronically insulating, ionically conducting solid electrolyte interphase.

6.
ACS Appl Mater Interfaces ; 8(11): 7013-21, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-26915096

RESUMO

The thermal stability of electrochemically delithiated Li0.1Ni0.8Co0.15Al0.05O2 (NCA), FePO4 (FP), Mn0.8Fe0.2PO4 (MFP), hydrothermally synthesized VOPO4, LiVOPO4, and electrochemically lithiated Li2VOPO4 is investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis, coupled with mass spectrometry (TGA-MS). The thermal stability of the delithiated materials is found to be in the order of NCA < VOPO4 < MFP < FP. Unlike the layered oxides and MFP, VOPO4 does not evolve O2 on heating. Thus, VOPO4 is less likely to cause a thermal run-away phenomenon in batteries at elevated temperature and so is inherently safer. The lithiated materials LiVOPO4, Li2VOPO4, and LiNi0.8Co0.15Al0.05O2 are found to be stable in the presence of electrolyte, but sealed-capsule high-pressure experiments show a phase transformation of VOPO4 → HVOPO4 → H2VOPO4 when VOPO4 reacts with electrolyte (1 M LiPF6 in EC/DMC = 1:1) between 200 and 300 °C. Using first-principles calculations, we confirm that the charged VOPO4 cathode is indeed predicted to be marginally less stable than FP but significantly more stable than NCA in the absence of electrolyte. An analysis of the reaction equilibria between VOPO4 and EC using a multicomponent phase diagram approach yields products and reaction enthalpies that are highly consistent with the experiment results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA