Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(48): 12815-12820, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29133427

RESUMO

Central neural networks operate continuously throughout life to control respiration, yet mechanisms regulating ventilatory frequency are poorly understood. Inspiration is generated by the pre-Bötzinger complex of the ventrolateral medulla, where it is thought that excitation increases inspiratory frequency and inhibition causes apnea. To test this model, we used an in vitro optogenetic approach to stimulate select populations of hindbrain neurons and characterize how they modulate frequency. Unexpectedly, we found that inhibition was required for increases in frequency caused by stimulation of Phox2b-lineage, putative CO2-chemosensitive neurons. As a mechanistic explanation for inhibition-dependent increases in frequency, we found that phasic stimulation of inhibitory neurons can increase inspiratory frequency via postinhibitory rebound. We present evidence that Phox2b-mediated increases in frequency are caused by rebound excitation following an inhibitory synaptic volley relayed by expiration. Thus, although it is widely thought that inhibition between inspiration and expiration simply prevents activity in the antagonistic phase, we instead propose a model whereby inhibitory coupling via postinhibitory rebound excitation actually generates fast modes of inspiration.


Assuntos
Dióxido de Carbono/farmacologia , Expiração/efeitos dos fármacos , Inalação/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Centro Respiratório/efeitos dos fármacos , Taxa Respiratória/efeitos dos fármacos , Animais , Dióxido de Carbono/metabolismo , Expiração/fisiologia , Feminino , Nervo Hipoglosso/efeitos dos fármacos , Inalação/fisiologia , Masculino , Bulbo/citologia , Bulbo/efeitos dos fármacos , Bulbo/fisiologia , Camundongos , Neurônios/citologia , Neurônios/fisiologia , Optogenética/métodos , Nervo Frênico/efeitos dos fármacos , Picrotoxina/farmacologia , Prazosina/farmacologia , Propranolol/farmacologia , Centro Respiratório/citologia , Centro Respiratório/fisiologia , Taxa Respiratória/fisiologia , Raízes Nervosas Espinhais/efeitos dos fármacos , Estricnina/farmacologia , Substância P/farmacologia
2.
Cell Rep ; 21(3): 654-665, 2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-29045834

RESUMO

Spinal cord injury (SCI) above cervical level 4 disrupts descending axons from the medulla that innervate phrenic motor neurons, causing permanent paralysis of the diaphragm. Using an ex vivo preparation in neonatal mice, we have identified an excitatory spinal network that can direct phrenic motor bursting in the absence of medullary input. After complete cervical SCI, blockade of fast inhibitory synaptic transmission caused spontaneous, bilaterally coordinated phrenic bursting. Here, spinal cord glutamatergic neurons were both sufficient and necessary for the induction of phrenic bursts. Direct stimulation of phrenic motor neurons was insufficient to evoke burst activity. Transection and pharmacological manipulations showed that this spinal network acts independently of medullary circuits that normally generate inspiration, suggesting a distinct non-respiratory function. We further show that this "latent" network can be harnessed to restore diaphragm function after high cervical SCI in adult mice and rats.


Assuntos
Vértebras Cervicais/fisiopatologia , Diafragma/inervação , Diafragma/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia , Animais , Animais Recém-Nascidos , Interneurônios/patologia , Luz , Vértebras Lombares/fisiopatologia , Camundongos , Neurônios Motores/patologia , Rede Nervosa/fisiopatologia , Paralisia/fisiopatologia , Nervo Frênico/fisiopatologia , Respiração , Transmissão Sináptica/fisiologia , Vértebras Torácicas/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA