Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Int J Mol Sci ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38279345

RESUMO

The skin of Arachis hypogaea L. (peanut or groundnut) is a rich source of polyphenols, which have been shown to exhibit a wider spectrum of noteworthy biological activities, including anticancer effects. However, the anticancer activity of peanut skin extracts against melanoma and colorectal cancer (CRC) cells remains elusive. In this study, we systematically investigated the cytotoxic, antiproliferative, pro-apoptotic, and anti-migration effects of peanut skin ethanolic extract and its fractions on melanoma and CRC cells. Cell viability results showed that the ethyl acetate fraction (AHE) of peanut skin ethanolic crude extract and one of the methanolic fractions (AHE-2) from ethyl acetate extraction exhibited the highest cytotoxicity against melanoma and CRC cells but not in nonmalignant human skin fibroblasts. AHE and AHE-2 effectively modulated the cell cycle-related proteins, including the suppression of cyclin-dependent kinase 4 (CDK4), cyclin-dependent kinase 6 (CDK6), phosphorylation of Retinoblastoma (p-Rb), E2F1, Cyclin A, and activation of tumor suppressor p53, which was associated with cell cycle arrest and paralleled their antiproliferative efficacies. AHE and AHE-2 could also induce caspase-dependent apoptosis and inhibit migration activities in melanoma and CRC cells. Moreover, it is noteworthy that autophagy, manifested by microtubule-associated protein light chain 3B (LC3B) conversion and the aggregation of GFP-LC3, was detected after AHE and AHE-2 treatment and provided protective responses in cancer cells. Significantly, inhibition of autophagy enhanced AHE- and AHE-2-induced cytotoxicity and apoptosis. Together, these findings not only elucidate the anticancer potential of peanut skin extracts against melanoma and CRC cells but also provide a new insight into autophagy implicated in peanut skin extracts-induced cancer cell death.


Assuntos
Acetatos , Arachis , Melanoma , Humanos , Linhagem Celular Tumoral , Extratos Vegetais/farmacologia , Apoptose , Autofagia
2.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37047358

RESUMO

Salvinal is a natural lignan isolated from the roots of Salvia mitorrhiza Bunge (Danshen). Previous studies have demonstrated its anti-proliferative activity in both drug-sensitive and -resistant cancer cell lines, with IC50 values ranging from 4-17 µM. In this study, a series of salvinal derivatives was synthesized and evaluated for the structure-activity relationship. Among the twenty-four salvinal derivatives, six compounds showed better anticancer activity than salvinal. Compound 25 displayed excellent anticancer activity, with IC50 values of 0.13-0.14 µM against KB, KB-Vin10 (overexpress MDR/Pgp), and KB-7D (overexpress MRP) human carcinoma cell lines. Based on our in vitro microtubule depolymerization assay, compound 25 showed depolymerization activity in a dose-dependent manner. Our findings indicate that compound 25 is a promising anticancer agent with depolymerization activity that has potential for the management of malignance.


Assuntos
Antineoplásicos , Humanos , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Moduladores de Tubulina/farmacologia , Microtúbulos , Proliferação de Células , Relação Dose-Resposta a Droga , Estrutura Molecular , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular
3.
Bioorg Chem ; 121: 105681, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35176558

RESUMO

Hypoxia-inducible factor (HIF)-1α is a key transcription factor that contributes to aggressive and drug-resistant phenotypes in tumor cells under hypoxic conditions. Therefore, targeting HIF-1α represents a promising therapeutic strategy for cancer drug development. In the present study, we designed, synthesized, and evaluated a new series of biarylquinoline derivatives as potential HIF-1α inhibitors based on structure-activity relationship. Among these derivatives, compound 7f represents the optimal agent with IC50 values of 28 nM and 15 nM in suppressing the viability of MiaPaCa-2 and MDA-MB-231 cells, respectively. Compound 7f also exhibited potent efficacy in inhibiting hypoxia-induced migration of MDA-MB-231 and MiaPaCa-2 cells. Mechanistically, compound 7f suppressed HIF-1α expression by blocking transcription and protein translation, in lieu of facilitating protein degradation. Moreover, this HIF-1α downregulation was associated with compound 7f's ability to concomitantly inhibit multiple signaling pathways governing HIF-1 α expression at different levels, including those mediated by STAT3, MEK/ERK MAPK, and mTOR/4E-BP1. Together, these findings underscore the translational potential of these biarylquinoline derivatives to be developed as novel HIF-1α inhibitors, which warrants further investigations.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Humanos , Hipóxia/tratamento farmacológico , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias/tratamento farmacológico , Transdução de Sinais
4.
Environ Toxicol ; 37(6): 1404-1412, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35212453

RESUMO

Oral squamous cell carcinoma (OSCC) represents a clinical challenge due to the lack of effective therapy to improve prognosis. Hippo/Yes-associated protein (YAP) signaling has emerged as a promising therapeutic target for squamous cell carcinoma treatment. In this study, we investigated the antitumor activity and underlying mechanisms of {[N-(4-(5-(3-(3-(4-acetamido-3-(trifluoromethyl)phenyl)ureido)phenyl)-1,2,4-oxadiazol-3-yl)-3-chlorophenyl)-nicotinamide]} (ATN), a novel YAP inhibitor, in OSCC cells. ATN exhibited differential antiproliferative efficacy against OSCC cells (IC50 as low as 0.29 µM) versus nontumorigenic human fibroblast cells (IC50  = 1.9 µM). Moreover, ATN effectively suppressed the expression of YAP and YAP-related or downstream targets, including Akt, p-AMPK, c-Myc, and cyclin D1, which paralleled the antiproliferative efficacy of ATN. Supporting the roles of YAP in regulating cancer cell survival and migration, ATN not only induced caspase-dependent apoptosis, but also suppressed migration activity in OSCC. Mechanistically, the antitumor activity of ATN in OSCC was attributed, in part, to its ability to regulate Mcl-1 expression. Together, these findings suggest a translational potential of YAP inhibitors, represented by ATN as anticancer therapy for OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Apoptose , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Neoplasias Bucais/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Proteínas de Sinalização YAP
5.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35163281

RESUMO

Calycosin, a bioactive isoflavonoid isolated from root extracts of Astragalus membranaceus, has been reported to inhibit melanogenesis, the mechanism of which remains undefined. In this study, we interrogated the mechanistic basis by which calycosin inhibits melanin production in two model systems, i.e., B16F10 melanoma cells and zebrafish embryos. Calycosin was effective in protecting B16F10 cells from α-melanocyte-stimulating hormone (α-MSH)-induced melanogenesis and tyrosinase activity. This anti-melanogenic effect was accompanied by decreased expression levels of microphthalmia-associated transcription factor (MITF), a key protein controlling melanin synthesis, and its target genes tyrosinase and tyrosinase-related protein-2 (TRP-2) in calycosin-treated cells. Mechanistically, we obtained the first evidence that calycosin-mediated MITF downregulation was attributable to its ability to block signaling pathways mediated by cAMP response element-binding protein (CREB) and p38 MAP kinase. The protein kinase A (PKA) inhibitor H-89 and p38 inhibitor SB203580 validated the premise that calycosin inhibits melanin synthesis and tyrosinase activity by regulating the PKA/CREB and p38 MAPK signaling pathways. Moreover, the in vivo anti-melanogenic efficacy of calycosin was manifested by its ability to suppress body pigmentation and tyrosinase activity in zebrafish embryos. Together, these data suggested the translational potential of calycosin to be developed as skin-lightening cosmeceuticals.


Assuntos
Isoflavonas/farmacologia , Melaninas/metabolismo , Animais , Astragalus propinquus/metabolismo , Linhagem Celular Tumoral , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Isoflavonas/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Fator de Transcrição Associado à Microftalmia/metabolismo , Fosforilação/efeitos dos fármacos , Extratos Vegetais/farmacologia , Raízes de Plantas , Transdução de Sinais/efeitos dos fármacos , Peixe-Zebra/metabolismo , alfa-MSH/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
Int J Mol Sci ; 19(7)2018 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-30004423

RESUMO

Cancer stem cells (CSCs), or tumor-initiating cells, are a small subset of cancer cells with the capacity for self-renewal and differentiation, which have been shown to drive tumor initiation, progression, and metastasis in many types of cancer. Moreover, therapeutic regimens, such as cisplatin and radiation were reported to induce the enrichment of CSCs, thereby conferring chemoresistance on cancer cells. Therefore, therapeutic targeting of CSCs represents a clinical challenge that needs to be addressed to improve patient outcome. In this context, the effectiveness of pan or class-I histone deacetylase (HDAC) inhibitors in suppressing the CSC population is especially noteworthy in light of the new paradigm of combination therapy. Evidence suggests that this anti-CSC activity is associated with the ability of HDAC inhibitors to target multiple signaling pathways at different molecular levels. Beyond chromatin remodeling via histone acetylation, HDAC inhibitors can also block key signaling pathways pertinent to CSC maintenance. Especially noteworthy is the ability of different HDAC isoforms to regulate the protein stability and/or activity of a series of epithelial-mesenchymal transition (EMT)-inducing transcription factors, including HIF-1α, Stat3, Notch1, ß-catenin, NF-κB, and c-Jun, each of which plays a critical role in regulating CSCs. From the translational perspective, these mechanistic links constitute a rationale to develop isoform-selective HDAC inhibitors as anti-CSC agents. Thus, this review aims to provide an overview on the roles of HDAC isoforms in maintaining CSC homeostasis via distinct signaling pathways independent of histone acetylation.


Assuntos
Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/metabolismo , Proteínas de Neoplasias , Neoplasias , Células-Tronco Neoplásicas/enzimologia , Animais , Humanos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia
9.
Chem Biol Drug Des ; 103(5): e14509, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38684369

RESUMO

The biphenyl scaffold represents a prominent privileged structure within the realms of organic chemistry and drug development. Biphenyl derivatives have demonstrated notable biological activities, including antimicrobial, anti-inflammatory, anti-HIV, and the treatment of neuropathic pain. Importantly, their anticancer abilities should not be underestimated. In this context, the present study involves the design and synthesis of a series of biphenyl derivatives featuring an additional privileged structure, namely the quinoline core. We have also diversified the substituents attached to the benzyloxy group at either the meta or para position of the biphenyl ring categorized into two distinct groups: [4,3']biphenylaminoquinoline-substituted and [3,3']biphenylaminoquinoline-substituted compounds. We embarked on an assessment of the cytotoxic activities of these derivatives in colorectal cancer cell line SW480 and prostate cancer cell line DU145 for exploring the structure-activity relationship. Furthermore, we determined the IC50 values of selected compounds that exhibited superior inhibitory effects on cell viability against SW480, DU145 cells, as well as MDA-MB-231 and MiaPaCa-2 cells. Notably, [3,3']biphenylaminoquinoline derivative 7j displayed the most potent cytotoxicity against these four cancer cell lines, SW480, DU145, MDA-MB-231, and MiaPaCa-2, with IC50 values of 1.05 µM, 0.98 µM, 0.38 µM, and 0.17 µM, respectively. This highly promising outcome underscores the potential of [3,3']biphenylaminoquinoline 7j for further investigation as a prospective anticancer agent in future research endeavors.


Assuntos
Antineoplásicos , Compostos de Bifenilo , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Compostos de Bifenilo/antagonistas & inibidores , Compostos de Bifenilo/farmacologia , Compostos de Bifenilo/química , Ensaios de Seleção de Medicamentos Antitumorais , Aminoquinolinas/química , Aminoquinolinas/farmacologia , Aminoquinolinas/síntese química , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos
10.
Carcinogenesis ; 34(12): 2694-705, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23864387

RESUMO

Insulin-like growth factor-I receptor (IGF-IR) represents one of the major targets by which dietary or chemically induced energy restriction mediates chemopreventive effects in animal tumor models. However, the mechanism underlying this cellular response remains unclear. In the course of investigating the suppressive effect of the energy restriction-mimetic agent CG-5 on IGF-IR expression in prostate cancer cells, we identified a novel posttranscriptional mechanism by which the RNA-binding protein human antigen R (HuR) regulates IGF-IR expression through messenger RNA (mRNA) stabilization. Previously, we demonstrated that Sp1 and HuR proteins were concomitantly targeted for ubiquitin-dependent degradation by ß-transducin repeat-containing protein in response to CG-5. Although this loss of Sp1 expression contributed to CG-5-mediated IGF-IR downregulation, enforced specific protein 1 (Sp1) expression could only partially protect cells from the drug effect. The small interfering RNA-mediated silencing of HuR suppressed IGF-IR expression by reducing mRNA stability, whereas ectopic HuR expression increased IGF-IR mRNA stability and protein expression and, when coexpressed with Sp1, blocked CG-5-mediated IGF-IR ablation. RNA pull-down and immunoprecipitation analyses indicated that HuR selectively bound to the distal region of the IGF-IR 3' untranslated region (UTR), whereas no interaction with the 5'UTR was noted. Evaluation of a series of truncated HuR mutants revealed that the RNA recognition motifs (RRM2 and RRM3) were involved in IGF-IR 3'UTR binding and the consequent increase in IGF-IR mRNA stability. Although these data contrast with a previous report that HuR acted as a translation repressor of IGF-IR mRNA through 5'UTR binding, our finding is consistent with the reported oncogenic role of HuR in conferring stability to target mRNAs encoding tumor-promoting proteins.


Assuntos
RNA Mensageiro/genética , Receptor IGF Tipo 1/genética , Transcrição Gênica/genética , Regiões 3' não Traduzidas/genética , Regiões 5' não Traduzidas/genética , Linhagem Celular Tumoral , Regulação para Baixo/genética , Proteínas ELAV/genética , Glicólise/genética , Humanos , Imunoglobulinas/genética , Masculino , Neoplasias da Próstata/genética , Processamento Pós-Transcricional do RNA/genética , Estabilidade de RNA/genética , Proteínas de Ligação a RNA/genética , Ribonucleosídeo Difosfato Redutase/genética
11.
J Biol Chem ; 287(52): 43639-50, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23115237

RESUMO

The mRNA-stabilizing protein HuR acts a stress response protein whose function and/or protein stability are modulated by diverse stress stimuli through posttranslational modifications. Here, we report a novel mechanism by which metabolic stress facilitates proteasomal degradation of HuR in cancer cells. In response to the glucose transporter inhibitor CG-5, HuR translocates to the cytoplasm, where it is targeted by the ubiquitin E3 ligase ß-TrCP1 for degradation. The cytoplasmic localization of HuR is facilitated by PKCα-mediated phosphorylation at Ser-318 as the Ser-318 → alanine substitution abolishes the ability of the resulting HuR to bind PKCα and to undergo nuclear export. The mechanistic link between ß-TrCP1 and HuR degradation was supported by the ability of ectopically expressed ß-TrCP1 to mimic CG-5 to promote HuR degradation and by the protective effect of dominant negative inhibition of ß-TrCP1 on HuR ubiquitination and degradation. Substrate targeting of HuR by ß-TrCP1 was further verified by coimmunoprecipitation and in vitro GST pull-down assays and by the identification of a ß-TrCP1 recognition site. Although HuR does not contain a DSG destruction motif, we obtained evidence that ß-TrCP1 recognizes an unconventional motif, (296)EEAMAIAS(304), in the RNA recognition motif 3. Furthermore, mutational analysis indicates that IKKα-dependent phosphorylation at Ser-304 is crucial to the binding of HuR to ß-TrCP1. Mechanistically, this HuR degradation pathway differs from that reported for heat shock and hypoxia, which underlies the complexity in the regulation of HuR turnover under different stress stimuli. The ability of glycolysis inhibitors to target the expression of oncogenic proteins through HuR degradation might foster novel strategies for cancer therapy.


Assuntos
Núcleo Celular/metabolismo , Proteínas ELAV/metabolismo , Glicólise , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Proteólise , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/genética , Motivos de Aminoácidos , Antineoplásicos/farmacologia , Sítios de Ligação , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/genética , Linhagem Celular Tumoral , Núcleo Celular/genética , Citoplasma/genética , Citoplasma/metabolismo , Proteínas ELAV/genética , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Masculino , Proteínas de Neoplasias/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Ligação Proteica , Ubiquitinação/efeitos dos fármacos , Ubiquitinação/genética , Proteínas Contendo Repetições de beta-Transducina/genética
12.
Future Med Chem ; 15(17): 1569-1582, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37728024

RESUMO

Background: The aminoquinoline core exhibits versatile pharmacological properties, particularly in the area of anticancer activity. This study was designed to investigate the potential of the 4-aminoquinoline scaffold in the development of anticancer agents by targeting the HIF-1α signaling pathway. Methodology: The authors synthesized multiple derivatives of 4-aminoquinoline containing heterocyclic rings by a microwave reactor and assessed the cytotoxicity and inhibitory effects of these derivatives on the HIF-1α signaling pathway. Conclusion: Compound 3s was identified as the most promising HIF-1α inhibitor due to its exceptional antiproliferative effects, with IC50 values of 0.6 and 53.3 nM observed in MiaPaCa-2 and MDA-MB-231 cells, respectively. Furthermore, compound 3s was found to inhibit HIF-1α expression by decreasing the level of HIF-1α mRNA.


Assuntos
Antineoplásicos , Transdução de Sinais , Antineoplásicos/farmacologia , Aminoquinolinas/farmacologia , RNA Mensageiro , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Linhagem Celular Tumoral
13.
Chem Biol Interact ; 380: 110538, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37164279

RESUMO

The enzyme pyruvate kinase M2 (PKM2) is involved in glycolysis, which plays an important role in the regulation of tumor progression. In this study, we investigated the anti-tumor activity of N-(4-(3-(3-(methylamino)-3-oxopropyl)-5-(4'-(trifluoromethyl)-[1,1'-biphenyl]-4-yl)-1H-pyrazol-1-yl)phenyl)propiolamide (MTP), a PKM2 inhibitor, in oral squamous cell carcinoma (OSCC) cells. Our results showed that MTP inhibited cell growth with IC50 values of 0.59 µM and 0.78 µM in SCC2095 and HSC-3 OSCC cells, respectively. MTP induced caspase-dependent apoptosis, which was associated with the modulation of PKM2 and oncogenic biomarkers epidermal growth factor receptor and ß-catenin. In addition, MTP increased the generation of reactive oxygen species (ROS) and modulated the expression of autophagic gene products, including LC3B-II and p62. Western blotting showed that MTP inhibited Janus kinase 2 (JAK2) signaling, and JAK2 overexpression partially reversed MTP-mediated cytotoxicity. Taken together, these data indicate the potential use of MTP as a therapeutic agent for OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço , Janus Quinase 2/metabolismo , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/metabolismo , Linhagem Celular Tumoral , Apoptose , Autofagia , Proliferação de Células
14.
Sci Rep ; 13(1): 22201, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097709

RESUMO

Disuse muscle atrophy occurs consequent to prolonged limb immobility or bed rest, which represents an unmet medical need. As existing animal models of limb immobilization often cause skin erosion, edema, and other untoward effects, we here report an alternative method via thermoplastic immobilization of hindlimbs in mice. While significant decreases in the weight and fiber size were noted after 7 days of immobilization, no apparent skin erosion or edema was found. To shed light onto the molecular mechanism underlying this muscle wasting, we performed the next-generation sequencing analysis of gastrocnemius muscles from immobilized versus non-mobilized legs. Among a total of 55,487 genes analyzed, 787 genes were differentially expressed (> fourfold; 454 and 333 genes up- and down-regulated, respectively), which included genes associated with muscle tissue development, muscle system process, protein digestion and absorption, and inflammation-related signaling. From a clinical perspective, this model may help understand the molecular/cellular mechanism that drives muscle disuse and identify therapeutic strategies for this debilitating disease.


Assuntos
Músculo Esquelético , Transtornos Musculares Atróficos , Humanos , Camundongos , Animais , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Transtornos Musculares Atróficos/genética , Transtornos Musculares Atróficos/patologia , Membro Posterior/metabolismo , Edema/patologia
15.
J Biol Chem ; 286(12): 9968-76, 2011 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-21282102

RESUMO

Although energy restriction has been recognized as an important target for cancer prevention, the mechanism by which energy restriction-mimetic agents (ERMAs) mediate apoptosis remains unclear. By using a novel thiazolidinedione-derived ERMA, CG-12 (Wei, S., Kulp, S. K., and Chen, C. S. (2010) J. Biol. Chem. 285, 9780-9791), vis-à-vis 2-deoxyglucose and glucose deprivation, we obtain evidence that epigenetic activation of the tumor suppressor gene Kruppel-like factor 6 (KLF6) plays a role in ERMA-induced apoptosis in LNCaP prostate cancer cells. KLF6 regulates the expression of many proapoptotic genes, and shRNA-mediated KLF6 knockdown abrogated the ability of ERMAs to induce apoptosis. Chromatin immunoprecipitation analysis indicates that this KLF6 transcriptional activation was associated with increased histone H3 acetylation and histone H3 lysine 4 trimethylation occupancy at the promoter region. Several lines of evidence demonstrate that the enhancing effect of ERMAs on these active histone marks was mediated through transcriptional repression of histone deacetylases and H3 lysine 4 demethylases by down-regulating Sp1 expression. First, putative Sp1-binding elements are present in the promoters of the affected histone-modifying enzymes, and luciferase reporter assays indicate that site-directed mutagenesis of these Sp1 binding sites significantly diminished the promoter activities. Second, shRNA-mediated knockdown of Sp1 mimicked the repressive effect of energy restriction on these histone-modifying enzymes. Third, ectopic Sp1 expression protected cells from the repressive effect of CG-12 on these histone-modifying enzymes, thereby abolishing the activation of KLF6 expression. Together, these findings underscore the intricate relationship between energy restriction and epigenetic regulation of tumor suppressor gene expression, which has therapeutic relevance to foster novel strategies for prostate cancer therapy.


Assuntos
Apoptose/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Fatores de Transcrição Kruppel-Like/biossíntese , Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas/biossíntese , Tiazolidinedionas/farmacologia , Proteínas Supressoras de Tumor/biossíntese , Acetilação/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Epigênese Genética/genética , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Fator 6 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Masculino , Metilação/efeitos dos fármacos , Neoplasias da Próstata/genética , Proteínas Proto-Oncogênicas/genética , Elementos de Resposta/genética , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Proteínas Supressoras de Tumor/genética
16.
Cancers (Basel) ; 14(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36230821

RESUMO

Triple negative breast cancer (TNBC) is considered the most aggressive breast cancer with high relapse rates and poor prognosis. Although great advances in the development of cancer therapy have been witnessed over the past decade, the treatment options for TNBC remain limited. In this study, we investigated the effect and potential underlying mechanism of the Hsp70 inhibitors, compound 1 and compound 6, on breast cancer stem cells (BCSCs) in TNBC cells. Our results showed that compound 1 and 6 exhibited potent tumor suppressive effects on cell viability and proliferation, and effectively inhibited BCSC expansion in TNBC cells. Reminiscent with the effect of Hsp70 inhibitors, Hsp70 knockdown effectively suppressed mammosphere formation and the expressions of BCSCs surface markers. Mechanistically, evidence showed that the Hsp70 inhibitors inhibited BCSCs by down-regulating ß-catenin in TNBC cells. Moreover, we used the Hsp70 inhibitors treated TNBC cells and a stable Hsp70 knockdown clone of MDA-MB-231 cells to demonstrate the in vivo efficacy of Hsp70 inhibition in suppressing tumorigenesis and xenograft tumor growth. Together, these findings suggest the potential role of Hsp70 as a target for TNBC therapy and foster new therapeutic strategies to eliminate BCSCs by targeting Hsp70.

17.
J Cachexia Sarcopenia Muscle ; 13(4): 2073-2087, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35718751

RESUMO

BACKGROUND: Despite recent advances in understanding the pathophysiology of cancer cachexia, prevention/treatment of this debilitating disease remains an unmet medical need. METHODS: We developed an integrated, multi-tiered strategy involving both in vitro and in vivo muscle atrophy platforms to identify traditional Chinese medicine (TCM)-based anti-cachectic agents. In the initial screening, we used inflammatory cytokine-induced atrophy of C2C12 myotubes as a phenotypic screening platform to assess the protective effects of TCMs. The selected TCMs were then evaluated for their abilities to protect Caenorhabditis elegans from age-related reduction of mobility and contractility, followed by the C-26 colon adenocarcinoma mouse model of cachexia to confirm the anti-muscle atrophy effects (body/skeletal muscle weights, fibre size distribution, grip strengths, and serum IL-6). Transcriptome analysis, quantitative real-time polymerase chain reaction, and immunoblotting were performed to gain understanding of the potential mechanism(s) by which effective TCM protected against C26 tumour-induced muscle atrophy. RESULTS: Of 29 widely used TCMs, Dioscorea radix (DR) and Mu Dan Pi (MDP) showed a complete protection (all P values, 0.0002) vis-à-vis C26 conditioned medium control in the myotube atrophy platform. MDP exhibited a unique ability to ameliorate age-associated decreases in worm mobility, accompanied by improved total body contractions, relative to control (P < 0.0001 and <0.01, respectively), which, however, was not noted with DR. This differential in vivo protective effect between MDP and DR was also confirmed in the C-26 mouse model. MDP at 1000 mg/kg (MDP-H) was effective in protecting body weight loss (P < 0.05) in C-26 tumour-bearing mice without changing food or water intake, accompanied by the restoration of the fibre size distribution of hindleg skeletal muscles (P < 0.0001) and the forelimb grip strength (P < 0.05). MDP-treated C-26-tumour-bearing mice were alert, showed normal posture and better body conditions, and exhibited lower serum IL-6 levels (P = 0.06) relative to vehicle control. This decreased serum IL-6 was associated with the in vitro suppressive effect of MDP (25 and 50 µg/mL) on IL-6 secretion into culture medium by C26 cells. RNA-seq analysis, followed by quantitative real-time polymerase chain reaction and/or immunoblotting, shows that MDP's anti-cachectic effect was attributable to its ability to reverse the C-26 tumour-induced re-programming of muscle homoeostasis-associated gene expression, including that of two cachexia drivers (MuRF1 and Atrogin-1), in skeletal muscles. CONCLUSIONS: All these findings suggest the translational potential of MDP to foster new strategies for the prevention and/or treatment of cachexia. The protective effect of MDP on other types of muscle atrophy such as sarcopenia might warrant investigations.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Adenocarcinoma/patologia , Animais , Caquexia/etiologia , Caquexia/genética , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Modelos Animais de Doenças , Interleucina-6 , Medicina Tradicional Chinesa , Camundongos , Atrofia Muscular/patologia
18.
Future Med Chem ; 13(12): 1057-1072, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33896195

RESUMO

Aim: Tumor cells adapt to hypoxic microenvironments by releasing the key transcription factor HIF-1α, which promotes angiogenesis, glycolytic phenotype, metastasis and erythropoiesis, allowing proliferation amid low oxygen levels. Therefore, therapeutic targeting of HIF-1α represents a viable strategy for cancer therapy. Methods & Results: The authors synthesized a series of novel tetrahydroquinazoline derivatives in six steps and demonstrated that their development had a unique ability to suppress HIF-1α expression through proteasomal degradation. Conclusion: Among these compounds, CDMP-TQZ (8bf) exhibited the highest antiproliferative potency in human cancer cells, in part through downregulation of HIF-1α.


Assuntos
Antineoplásicos/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Quinazolinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Estrutura Molecular , Quinazolinas/síntese química , Quinazolinas/química , Células Tumorais Cultivadas
19.
Curr Med Chem ; 28(26): 5431-5446, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33538660

RESUMO

BACKGROUND: A growing body of evidence suggests that Hsp70, which is overexpressed in human breast tumors, plays a role in tumorigenesis and tumor progression in breast cancer as well as in its aggressive phenotypes. Hsp70 constitutes a potential therapeutic target in the treatment of this disease. METHODS: We developed a new series of rhodacyanine-based Hsp70 inhibitors, represented by compounds 1 and 6, in which the cationic pyridin-1-ium or thiazol-3-ium ring of existing Hsp70 inhibitors (e.g., JG-40 and JG-98) was replaced by a corresponding benzo- fused N-heterocycle. RESULTS: Several lines of evidence suggest that these benzo-fused derivatives may exert their antitumor activities, in part, by targeting Hsp70. These putative inhibitors displayed differential antiproliferative efficacy against breast cancer cells (IC50 as low as 0.25 µM) versus nontumorigenic MCF-10A breast epithelial cells (IC50 ≥ 5 µM). This was correlated with the corresponding Hsp70 expression levels. Using a protein refolding assay, we confirmed that these agents effectively inhibited the chaperone activity of Hsp70. Moreover, these inhibitors effectively suppressed the expression of well-known oncogenic client proteins of Hsp70's, including FoxM1, HuR, and Akt, which paralleled their antiproliferative efficacy. Supporting the established role of Hsp70 in regulating protein refolding, these derivatives induced autophagy, as manifested by the conversion of LC3B-I to LC3B-II. Notably, these putative Hsp70 inhibitors did not cause a compensatory elevation in Hsp90 expression, contrasting with the previously reported effects of Hsp90 inhibitors on Hsp70 upregulation. CONCLUSION: Together with the finding that compounds 1 and 6 showed improved microsomal stability, these results suggest the translational potential of these putative Hsp70 inhibitors to foster new strategies for cancer therapy. However, whether these benzo-fused rhodacyanines act on kinases or other targets remains unclear. It is currently under investigation.


Assuntos
Proteínas de Choque Térmico HSP70 , Tiazóis , Linhagem Celular Tumoral , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Proteínas de Choque Térmico HSP90 , Humanos , Compostos de Piridínio
20.
ACS Med Chem Lett ; 11(4): 426-432, 2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32292545

RESUMO

Recent evidence has linked the dysregulation of the Hippo pathway to tumorigenesis and cancer progression due to its pivotal role in regulating the stability of the oncoprotein YAP. Based on an unexpected finding from the SAR study of a recently reported oxadiazole-based EGFR/c-Met dual inhibitor (compound 1), we identified a closely related derivative, compound 2, which exhibited cogent antitumor activities while devoid of compound 1's ability to promote EGFR/c-Met degradation. Compound 2 acted, in part, by facilitating YAP degradation through activation of its upstream kinase LATS1. However, it did not alter the phosphorylation status of MST1/2, a LATS1 kinase, suggesting an alternative mechanism for LATS1 activation. Orally administered compound 2 was effective in suppressing MDA-MB-231 xenograft tumor growth while exhibiting a satisfactory safety profile. From a therapeutic perspective, compound 2 might help foster new therapeutic strategies for cancer treatment by restoring the Hippo pathway regulatory function to facilitate YAP degradation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA