Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36293085

RESUMO

Seed germination is susceptible to external environmental factors, especially salt stress. Suaeda liaotungensis is a halophyte with strong salt tolerance, and the germination rate of brown seeds under 1000 mM NaCl treatment still reached 28.9%. To explore the mechanism of salt stress response during brown seed germination in Suaeda liaotungensis, we conducted transcriptomic analysis on the dry seeds (SlD), germinated seeds under the control condition (SlG_C), and salt treatment (SlG_N). Transcriptome analysis revealed that 13314 and 755 differentially expressed genes (DEGs) from SlD vs. SlG_C and SlG_C vs. SlG_N were detected, respectively. Most DEGs were enriched in pathways related to transcription regulation and hormone signal transduction, ROS metabolism, cell wall organization or biogenesis, and carbohydrate metabolic process in two contrasting groups. Compared with the control condition, POD and CAT activity, H2O2, soluble sugar, and proline contents were increased during germinated seeds under salt stress. Furthermore, functional analysis demonstrated that overexpression of SlNAC2 significantly enhanced salt tolerance during the germination stage in Arabidopsis. These results not only revealed the tolerant mechanism of brown seed germination in response to salinity stress but also promoted the exploration and application of salt-tolerant gene resources of Suaeda liaotungensis.


Assuntos
Arabidopsis , Chenopodiaceae , Germinação/genética , Tolerância ao Sal/genética , Sementes/metabolismo , Peróxido de Hidrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cloreto de Sódio/farmacologia , Cloreto de Sódio/metabolismo , Chenopodiaceae/genética , Chenopodiaceae/metabolismo , Arabidopsis/genética , Perfilação da Expressão Gênica , Açúcares/metabolismo , Prolina/metabolismo , Hormônios/metabolismo , Carboidratos
2.
Plants (Basel) ; 12(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36987096

RESUMO

Soil salinization is an increasing agricultural problem around the world, affecting crop productivity and quality. Seed germination and seedling establishment are susceptible to salt stress. Suaeda liaotungensis is a halophyte with strong salt tolerance that produces dimorphic seeds to adapt to the saline environment. Differences in physiological characteristics, seed germination, and seedling establishment in response to salt stress between dimorphic seeds in S. liaotungensis have not been reported. The results showed that brown seeds had significantly higher H2O2 and O2-. levels and betaine content, as well as POD and CAT activities, while they had significantly lower MDA and proline contents and SOD activity than black seeds. Light promoted the germination of brown seeds in a certain temperature range, and brown seeds could reach a higher germination percentage in a wide temperature range. However, light and temperature had no effect on the germination percentage of black seeds. Brown seeds had higher germination than black seeds under the same NaCl concentration. The final germination of brown seeds was significantly decreased as salt concentration increased, whereas this had no effect on the final germination of black seeds. POD and CAT activities, as well as MDA content, in brown seeds were significantly higher than those in black seeds during germination under salt stress. Additionally, the seedlings from brown seeds were more tolerant to salinity than those from black seeds. Therefore, these results will give an in-depth understanding of the adaptation strategies of dimorphic seeds to a salinization environment, and better exploitation and utilization of S. liaotungensis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA