Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Gut ; 69(2): 231-242, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31068366

RESUMO

OBJECTIVE: Gastric cancer (GC) is a leading cause of cancer mortality. Previous studies have shown that hepatocyte nuclear factor-4α (HNF4α) is specifically overexpressed in GC and functionally required for GC development. In this study, we investigated, on a genome-wide scale, target genes of HNF4α and oncogenic pathways driven by HNF4α and HNF4α target genes. DESIGN: We performed HNF4α chromatin immunoprecipitation followed by sequencing across multiple GC cell lines, integrating HNF4α occupancy data with (epi)genomic and transcriptome data of primary GCs to define HNF4α target genes of in vitro and in vivo relevance. To investigate mechanistic roles of HNF4α and HNF4α targets, we performed cancer metabolic measurements, drug treatments and functional assays including murine xenograft experiments. RESULTS: Gene expression analysis across 19 tumour types revealed HNF4α to be specifically upregulated in GCs. Unbiased pathway analysis revealed organic acid metabolism as the top HNF4α-regulated pathway, orthogonally supported by metabolomic analysis. Isocitrate dehydrogenase 1 (IDH1) emerged as a convergent HNF4α direct target gene regulating GC metabolism. We show that wild-type IDH1 is essential for GC cell survival, and that certain GC cells can be targeted by IDH1 inhibitors. CONCLUSIONS: Our results highlight a role for HNF4α in sustaining GC oncogenic metabolism, through the regulation of IDH1. Drugs targeting wild-type IDH1 may thus have clinical utility in GCs exhibiting HNF4α overexpression, expanding the role of IDH1 in cancer beyond IDH1/2 mutated malignancies.


Assuntos
Fator 4 Nuclear de Hepatócito/genética , Isocitrato Desidrogenase/metabolismo , Neoplasias Gástricas/genética , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Marcação de Genes/métodos , Fator 4 Nuclear de Hepatócito/metabolismo , Humanos , Isocitrato Desidrogenase/antagonistas & inibidores , Camundongos Endogâmicos NOD , Terapia de Alvo Molecular/métodos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Regiões Promotoras Genéticas/genética , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Regulação para Cima/genética , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Acta Biomater ; 57: 115-126, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28435079

RESUMO

Muscular disease has debilitating effects with severe damage leading to death. Our knowledge of muscle biology, disease and treatment is largely derived from non-human cell models, even though non-human cells are known to differ from human cells in their biochemical responses. Attempts to develop highly sought after in vitro human cell models have been plagued by early cell delamination and difficulties in achieving human myotube culture in vitro. In this work, we developed polyurethane acrylate (PUA) materials to support long-term in vitro culture of human skeletal muscle tissue. Using a constant base with modulated crosslink density we were able to vary the material modulus while keeping surface chemistry and roughness constant. While previous studies have focused on materials that mimic soft muscle tissue with stiffness ca. 12kPa, we investigated materials with tendon-like surface moduli in the higher 150MPa to 2.4GPa range, which has remained unexplored. We found that PUA of an optimal modulus within this range can support human myoblast proliferation, terminal differentiation and sustenance beyond 35days, without use of any extracellular protein coating. Results show that PUA materials can serve as effective substrates for successful development of human skeletal muscle cell models and are suitable for long-term in vitro studies. STATEMENT OF SIGNIFICANCE: We developed polyurethane acrylates (PUA) to modulate the human skeletal muscle cell growth and maturation in vitro by controlling surface chemistry, morphology and tuning material's stiffness. PUA was able to maintain muscle cell viability for over a month without any detectable signs of material degradation. The best performing PUA prevented premature cell detachment from the substrate which often hampered long-term muscle cell studies. It also supported muscle cell maturation up to the late stages of differentiation. The significance of these findings lies in the possibility to advance studies on muscle cell biology, disease and therapy by using human muscle cells instead of relying on the widely used animal-based in vitro models.


Assuntos
Técnicas de Cultura de Células/métodos , Metacrilatos/química , Fibras Musculares Esqueléticas/metabolismo , Poliuretanos/química , Humanos , Fibras Musculares Esqueléticas/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA