Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38894260

RESUMO

This paper describes the development of an in-pipe inspection robot system designed for large-diameter water pipes. The robot is equipped with a Magnetic Flux Leakage (MFL) sensor module. The robot system is intended for pipes with diameters ranging from 900 mm to 1200 mm. The structure of the in-pipe inspection robot consists of the front and rear driving parts, with the inspection module located centrally. The robot is powered by 22 motors, including eight wheels with motors positioned at both the bottom and the top for propulsion. To ensure that the robot's center aligns with that of the pipeline during operation, lifting units have been incorporated. The robot is equipped with cameras and LiDAR sensors at the front and rear to monitor the internal environment of the pipeline. Pipeline inspection is conducted using the MFL inspection modules, and the robot's driving mechanism is designed to execute spiral maneuvers while maintaining contact with the pipeline surface during rotation. The in-pipe inspection robot is configured with wireless communication modules and batteries, allowing for wireless operation. Following its development, the inspection robot underwent driving experiments in actual pipelines to validate its performance. The field test bed used for these experiments is approximately 1 km in length. Results from the driving experiments on the field test bed confirmed the robot's ability to navigate various curvatures and obstacles within the pipeline. It is posited that the use of the developed in-pipe inspection robot can reduce economic costs and enhance the safety of inspectors when examining aging pipes.

2.
Sensors (Basel) ; 23(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36772749

RESUMO

In recent years, deep learning (DL) has been widely studied using various methods across the globe, especially with respect to training methods and network structures, proving highly effective in a wide range of tasks and applications, including image, speech, and text recognition. One important aspect of this advancement is involved in the effort of designing and upgrading neural architectures, which has been consistently attempted thus far. However, designing such architectures requires the combined knowledge and know-how of experts from each relevant discipline and a series of trial-and-error steps. In this light, automated neural architecture search (NAS) methods are increasingly at the center of attention; this paper aimed at summarizing the basic concepts of NAS while providing an overview of recent studies on the applications of NAS. It is worth noting that most previous survey studies on NAS have been focused on perspectives of hardware or search strategies. To the best knowledge of the present authors, this study is the first to look at NAS from a computer vision perspective. In the present study, computer vision areas were categorized by task, and recent trends found in each study on NAS were analyzed in detail.

3.
Sci Rep ; 12(1): 10947, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768457

RESUMO

Individuals with below-knee amputation (BKA) experience increased physical effort when walking, and the use of a robotic ankle-foot prosthesis (AFP) can reduce such effort. The walking effort could be further reduced if the robot is personalized to the wearer using human-in-the-loop (HIL) optimization of wearable robot parameters. The conventional physiological measurement, however, requires a long estimation time, hampering real-time optimization due to the limited experimental time budget. This study hypothesized that a function of foot contact force, the symmetric foot force-time integral (FFTI), could be used as a cost function for HIL optimization to rapidly estimate the physical effort of walking. We found that the new cost function presents a reasonable correlation with measured metabolic cost. When we employed the new cost function in HIL ankle-foot prosthesis stiffness parameter optimization, 8 individuals with simulated amputation reduced their metabolic cost of walking, greater than 15% (p < 0.02), compared to the weight-based and control-off conditions. The symmetry cost using the FFTI percentage was lower for the optimal condition, compared to all other conditions (p < 0.05). This study suggests that foot force-time integral symmetry using foot pressure sensors can be used as a cost function when optimizing a wearable robot parameter.


Assuntos
Membros Artificiais , Dispositivos Eletrônicos Vestíveis , Articulação do Tornozelo/fisiologia , Fenômenos Biomecânicos , Marcha/fisiologia , Humanos , Caminhada/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA