Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
2.
PLoS Biol ; 17(9): e3000414, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31479441

RESUMO

Bardet-Biedl syndrome (BBS), a ciliopathy, is a rare genetic condition characterised by retinal degeneration, obesity, kidney failure, and cognitive impairment. In spite of progress made in our general understanding of BBS aetiology, the molecular and cellular mechanisms underlying cognitive impairment in BBS remain elusive. Here, we report that the loss of BBS proteins causes synaptic dysfunction in principal neurons, providing a possible explanation for the cognitive impairment phenotype observed in BBS patients. Using synaptosomal proteomics and immunocytochemistry, we demonstrate the presence of Bbs proteins in the postsynaptic density (PSD) of hippocampal neurons. Loss of Bbs results in a significant reduction of dendritic spines in principal neurons of Bbs mouse models. Furthermore, we show that spine deficiency correlates with events that destabilise spine architecture, such as impaired spine membrane receptor signalling, known to be involved in the maintenance of dendritic spines. Our findings suggest a role for BBS proteins in dendritic spine homeostasis that may be linked to the cognitive phenotype observed in BBS.


Assuntos
Síndrome de Bardet-Biedl/patologia , Proteínas do Citoesqueleto/metabolismo , Espinhas Dendríticas/patologia , Animais , Ansiedade , Síndrome de Bardet-Biedl/metabolismo , Síndrome de Bardet-Biedl/fisiopatologia , Síndrome de Bardet-Biedl/psicologia , Giro Denteado/fisiopatologia , Modelos Animais de Doenças , Potenciais Pós-Sinápticos Excitadores , Feminino , Masculino , Memória , Camundongos , Receptor IGF Tipo 1/metabolismo , Sinaptossomos/metabolismo
3.
Proc Natl Acad Sci U S A ; 108(26): 10732-7, 2011 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-21670302

RESUMO

The balance between excitatory and inhibitory synapses is crucial for normal brain function. Wnt proteins stimulate synapse formation by increasing synaptic assembly. However, it is unclear whether Wnt signaling differentially regulates the formation of excitatory and inhibitory synapses. Here, we demonstrate that Wnt7a preferentially stimulates excitatory synapse formation and function. In hippocampal neurons, Wnt7a increases the number of excitatory synapses, whereas inhibitory synapses are unaffected. Wnt7a or postsynaptic expression of Dishevelled-1 (Dvl1), a core Wnt signaling component, increases the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs), but not miniature inhibitory postsynaptic currents (mIPSCs). Wnt7a increases the density and maturity of dendritic spines, whereas Wnt7a-Dvl1-deficient mice exhibit defects in spine morphogenesis and mossy fiber-CA3 synaptic transmission in the hippocampus. Using a postsynaptic reporter for Ca(2+)/Calmodulin-dependent protein kinase II (CaMKII) activity, we demonstrate that Wnt7a rapidly activates CaMKII in spines. Importantly, CaMKII inhibition abolishes the effects of Wnt7a on spine growth and excitatory synaptic strength. These data indicate that Wnt7a signaling is critical to regulate spine growth and synaptic strength through the local activation of CaMKII at dendritic spines. Therefore, aberrant Wnt7a signaling may contribute to neurological disorders in which excitatory signaling is disrupted.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Dendritos , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Sinapses/fisiologia , Proteínas Wnt/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Células Cultivadas , Hipocampo/citologia , Hipocampo/enzimologia , Hipocampo/metabolismo , Camundongos , Camundongos Mutantes , Morfogênese , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/genética , Ratos , Ratos Sprague-Dawley , Proteínas Wnt/genética
4.
Neuron ; 57(1): 3-4, 2008 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-18184558

RESUMO

Electrical activity plays a crucial role in neuronal circuit assembly. Activation of NMDA receptors induces the elevation of intracellular calcium, resulting in the modulation of calcium-calmodulin-dependent protein kinases (CaMKs). The CaMK pathway regulates synaptogenesis by driving the formation of dendritic spines. However, the molecular effectors downstream of this pathway have remained poorly defined. In this issue of Neuron, Saneyoshi et al. identify a new signaling complex containing CaMKK/CaMKI/betaPIX/Rac that regulates the morphogenesis of spines in an activity-dependent manner.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/fisiologia , Proteínas de Ciclo Celular/fisiologia , Citoesqueleto/fisiologia , Espinhas Dendríticas/fisiologia , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Morfogênese/fisiologia , Neurônios/citologia , Actinas/fisiologia , Animais , Modelos Biológicos , Fatores de Troca de Nucleotídeo Guanina Rho
5.
J Cell Biol ; 174(1): 127-39, 2006 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-16818724

RESUMO

Proper dialogue between presynaptic neurons and their targets is essential for correct synaptic assembly and function. At central synapses, Wnt proteins function as retrograde signals to regulate axon remodeling and the accumulation of presynaptic proteins. Loss of Wnt7a function leads to defects in the localization of presynaptic markers and in the morphology of the presynaptic axons. We show that loss of function of Dishevelled-1 (Dvl1) mimics and enhances the Wnt7a phenotype in the cerebellum. Although active zones appear normal, electrophysiological recordings in cerebellar slices from Wnt7a/Dvl1 double mutant mice reveal a defect in neurotransmitter release at mossy fiber-granule cell synapses. Deficiency in Dvl1 decreases, whereas exposure to Wnt increases, synaptic vesicle recycling in mossy fibers. Dvl increases the number of Bassoon clusters, and like other components of the Wnt pathway, it localizes to synaptic sites. These findings demonstrate that Wnts signal across the synapse on Dvl-expressing presynaptic terminals to regulate synaptic assembly and suggest a potential novel function for Wnts in neurotransmitter release.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Neurotransmissores/metabolismo , Fosfoproteínas/fisiologia , Terminações Pré-Sinápticas/metabolismo , Proteínas Proto-Oncogênicas/fisiologia , Transdução de Sinais/fisiologia , Sinapses/fisiologia , Proteínas Wnt/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Células Cultivadas , Proteínas Desgrenhadas , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Fenótipo , Fosfoproteínas/deficiência , Fosfoproteínas/genética , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Sinapses/metabolismo , Sinapses/ultraestrutura , Proteínas Wnt/deficiência , Proteínas Wnt/genética
6.
J Neurosci ; 28(34): 8644-54, 2008 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-18716223

RESUMO

Axon guidance and target-derived signals control axonal behavior by regulating the cytoskeleton through poorly defined mechanisms. In particular, how these signaling molecules regulate the growth and directionality of microtubules is not well understood. Here we examine the effect of Wnts on growth cone remodeling, a process that precedes synapse formation. Time-lapse recordings reveal that Wnt3a rapidly inhibits growth cone translocation while inducing growth cone enlargement. These changes in axonal behavior are associated with changes in the organization of microtubules. Time-lapse imaging of EB3-GFP (green fluorescent protein)-labeled microtubule plus-ends demonstrates that Wnt3a regulates microtubule directionality, resulting in microtubule looping, growth cone pausing, and remodeling. Analyses of Dishevelled-1 (Dvl1) mutant neurons demonstrate that Dvl1 is required for Wnt-mediated microtubule reorganization and axon remodeling. Wnt signaling directly affects the microtubule cytoskeleton by unexpectedly inducing adenomatous polyposis coli (APC) loss from microtubule plus-ends. Consistently, short hairpin RNA knockdown of APC mimics Wnt3a function. Together, our findings define APC as a key Wnt signaling target in the regulation of microtubule growth direction.


Assuntos
Proteína da Polipose Adenomatosa do Colo/fisiologia , Axônios/fisiologia , Microtúbulos/fisiologia , Proteínas Wnt/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteína da Polipose Adenomatosa do Colo/deficiência , Animais , Animais Recém-Nascidos , Células Cultivadas , Proteínas Desgrenhadas , Regulação para Baixo/fisiologia , Embrião de Mamíferos , Gânglios Espinais/citologia , Cones de Crescimento/metabolismo , Cones de Crescimento/fisiologia , Camundongos , Camundongos Knockout , Plasticidade Neuronal/fisiologia , Neurônios Aferentes/fisiologia , Fosfoproteínas/fisiologia , Isoformas de Proteínas/fisiologia , Transdução de Sinais/fisiologia , Fatores de Tempo , Transfecção , Proteína Wnt3 , Proteína Wnt3A , beta Catenina/metabolismo
7.
J Cell Biol ; 164(2): 243-53, 2004 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-14734535

RESUMO

Dishevelled (DVL) is associated with axonal microtubules and regulates microtubule stability through the inhibition of the serine/threonine kinase, glycogen synthase kinase 3beta (GSK-3beta). In the canonical WNT pathway, the negative regulator Axin forms a complex with beta-catenin and GSK-3beta, resulting in beta-catenin degradation. Inhibition of GSK-3beta by DVL increases beta-catenin stability and TCF transcriptional activation. Here, we show that Axin associates with microtubules and unexpectedly stabilizes microtubules through DVL. In turn, DVL stabilizes microtubules by inhibiting GSK-3beta through a transcription- and beta-catenin-independent pathway. More importantly, axonal microtubules are stabilized after DVL localizes to axons. Increased microtubule stability is correlated with a decrease in GSK-3beta-mediated phosphorylation of MAP-1B. We propose a model in which Axin, through DVL, stabilizes microtubules by inhibiting a pool of GSK-3beta, resulting in local changes in the phosphorylation of cellular targets. Our data indicate a bifurcation in the so-called canonical WNT-signaling pathway to regulate microtubule stability.


Assuntos
Microtúbulos/fisiologia , Neurônios/fisiologia , Fosfoproteínas/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Animais Recém-Nascidos , Células COS , Linhagem Celular , Cerebelo/citologia , Chlorocebus aethiops , Proteínas Desgrenhadas , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Camundongos , Microtúbulos/ultraestrutura , Neurônios/citologia , Proteínas Tirosina Quinases/fisiologia , Transdução de Sinais , Transfecção , Proteínas Wnt
8.
Cell Rep ; 23(4): 1060-1071, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29694885

RESUMO

The structural and functional plasticity of synapses is critical for learning and memory. Long-term potentiation (LTP) induction promotes spine growth and AMPAR accumulation at excitatory synapses, leading to increased synaptic strength. Glutamate initiates these processes, but the contribution from extracellular modulators is not fully established. Wnts are required for spine formation; however, their impact on activity-mediated spine plasticity and AMPAR localization is unknown. We found that LTP induction rapidly increased synaptic Wnt7a/b protein levels. Acute blockade of endogenous Wnts or loss of postsynaptic Frizzled-7 (Fz7) receptors impaired LTP-mediated synaptic strength, spine growth, and AMPAR localization at synapses. Live imaging of SEP-GluA1 and single-particle tracking revealed that Wnt7a rapidly promoted synaptic AMPAR recruitment and trapping. Wnt7a, through Fz7, induced CaMKII-dependent loss of SynGAP from spines and increased extrasynaptic AMPARs by PKA phosphorylation. We identify a critical role for Wnt-Fz7 signaling in LTP-mediated synaptic accumulation of AMPARs and spine plasticity.


Assuntos
Potenciação de Longa Duração/fisiologia , Plasticidade Neuronal/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Glutamato/metabolismo , Coluna Vertebral/metabolismo , Via de Sinalização Wnt/fisiologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Receptores Frizzled , Camundongos , Proteínas Proto-Oncogênicas/metabolismo , Coluna Vertebral/citologia , Proteínas Wnt/metabolismo
9.
BMC Cell Biol ; 8: 27, 2007 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-17608927

RESUMO

BACKGROUND: Wnt factors are a large family of signaling molecules that play important roles in the regulation of cell fate specification, tissue polarity and cell movement. In the nervous system, Wnts also regulates the formation of neuronal connection acting as retrograde signals that regulate the remodeling of the axons prior to the assembly of the presynaptic apparatus. The scaffold protein Dishevelled (Dvl) mimics the effect of Wnt on the neuronal cytoskeleton by increasing the number of stable microtubule along the axon shaft and inducing the formation of looped microtubules (MT) at enlarged growth cones. A divergent Wnt-Dvl canonical pathway which bifurcates downstream of Gsk3beta regulates MT dynamics. RESULTS: Here we show that the Wnt pathway also activates c-Jun N-terminal kinase (JNK) to regulate MT stabilization. Although in the Wnt planar cell polarity (PCP) pathway, JNK lays downstream of Rho GTPases, these GTPases are not required for Wnt-mediated MTs stability. Epistatic analyses and pharmacological studies suggest that the Wnt-Dvl signalling regulates the dynamic of the cytoskeleton through two different pathways that lead to inhibition of Gsk3beta and activation of JNK in the same cell. CONCLUSION: We demonstrate a novel role for JNK in Wnt-mediated MT stability. Wnt-Dvl pathway increases MT stability through a transcription independent mechanism that requires the concomitant inhibition of Gsk3beta and activation of JNK. These studies demonstrate that Wnts can simultaneously activate different signalling pathways to modulate cytoskeleton dynamics.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Microtúbulos/metabolismo , Fosfoproteínas/metabolismo , Proteínas Wnt/metabolismo , Animais , Animais Recém-Nascidos , Anisomicina/farmacologia , Antracenos/farmacologia , Bucladesina/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Células Cultivadas , Cerebelo/citologia , Proteínas Desgrenhadas , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Regulação Neoplásica da Expressão Gênica , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Camundongos , Neuroblastoma , Neurônios/efeitos dos fármacos , Nocodazol/farmacologia , Fatores de Tempo , Transfecção
10.
Mol Cell Biol ; 23(10): 3575-82, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12724416

RESUMO

While roles in adhesion and morphogenesis have been documented for classical cadherins, the nonclassical cadherins are much less well understood. Here we have examined the functions of the giant protocadherin FAT by generating a transgenic mouse lacking mFAT1. These mice exhibit perinatal lethality, most probably caused by loss of the renal glomerular slit junctions and fusion of glomerular epithelial cell processes (podocytes). In addition, some mFAT1(-/-) mice show defects in forebrain development (holoprosencephaly) and failure of eye development (anophthalmia). In contrast to Drosophila, where FAT acts as a tumor suppressor gene, we found no evidence for abnormalities of proliferation in two tissues (skin and central nervous system [CNS]) containing stem and precursor cell populations and in which FAT is expressed strongly. Our results confirm a necessary role for FAT1 in the modified adhesion junctions of the renal glomerular epithelial cell and reveal hitherto unsuspected roles for FAT1 in CNS development.


Assuntos
Caderinas/metabolismo , Rim/anormalidades , Rim/metabolismo , Alelos , Animais , Western Blotting , Bromodesoxiuridina/farmacologia , Caderinas/genética , Adesão Celular , Divisão Celular , Sistema Nervoso Central/embriologia , Sistema Nervoso Central/metabolismo , Cruzamentos Genéticos , Drosophila , Células Epiteliais/citologia , Genes Reporter , Genótipo , Heterozigoto , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica , Microscopia de Fluorescência , Modelos Genéticos , Fenótipo , Transdução de Sinais , Fatores de Tempo , Distribuição Tecidual
11.
Curr Biol ; 26(19): 2551-2561, 2016 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-27593374

RESUMO

Synapse degeneration occurs early in neurodegenerative diseases and correlates strongly with cognitive decline in Alzheimer's disease (AD). The molecular mechanisms that trigger synapse vulnerability and those that promote synapse regeneration after substantial synaptic failure remain poorly understood. Increasing evidence suggests a link between a deficiency in Wnt signaling and AD. The secreted Wnt antagonist Dickkopf-1 (Dkk1), which is elevated in AD, contributes to amyloid-ß-mediated synaptic failure. However, the impact of Dkk1 at the circuit level and the mechanism by which synapses disassemble have not yet been explored. Using a transgenic mouse model that inducibly expresses Dkk1 in the hippocampus, we demonstrate that Dkk1 triggers synapse loss, impairs long-term potentiation, enhances long-term depression, and induces learning and memory deficits. We decipher the mechanism involved in synapse loss induced by Dkk1 as it can be prevented by combined inhibition of the Gsk3 and RhoA-Rock pathways. Notably, after loss of synaptic connectivity, reactivation of the Wnt pathway by cessation of Dkk1 expression completely restores synapse number, synaptic plasticity, and long-term memory. These findings demonstrate the remarkable capacity of adult neurons to regenerate functional circuits and highlight Wnt signaling as a targetable pathway for neuronal circuit recovery after synapse degeneration.


Assuntos
Hipocampo/fisiopatologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Memória de Longo Prazo , Plasticidade Neuronal , Sinapses/fisiologia , Via de Sinalização Wnt , Animais , Feminino , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos , Camundongos Transgênicos
12.
Nat Commun ; 6: 8302, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26400647

RESUMO

The functional assembly of the synaptic release machinery is well understood; however, how signalling factors modulate this process remains unknown. Recent studies suggest that Wnts play a role in presynaptic function. To examine the mechanisms involved, we investigated the interaction of release machinery proteins with Dishevelled-1 (Dvl1), a scaffold protein that determines the cellular locale of Wnt action. Here we show that Dvl1 directly interacts with Synaptotagmin-1 (Syt-1) and indirectly with the SNARE proteins SNAP25 and Syntaxin (Stx-1). Importantly, the interaction of Dvl1 with Syt-1, which is regulated by Wnts, modulates neurotransmitter release. Moreover, presynaptic terminals from Wnt signalling-deficient mice exhibit reduced release probability and are unable to sustain high-frequency release. Consistently, the readily releasable pool size and formation of SNARE complexes are reduced. Our studies demonstrate that Wnt signalling tunes neurotransmitter release and identify Syt-1 as a target for modulation by secreted signalling proteins.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Neurônios/metabolismo , Neurotransmissores/metabolismo , Fosfoproteínas/genética , Vesículas Sinápticas/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo , Sinaptotagmina I/metabolismo , Sintaxina 1/metabolismo , Via de Sinalização Wnt , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas Desgrenhadas , Imunofluorescência , Hipocampo/citologia , Hipocampo/metabolismo , Imunoprecipitação , Camundongos , Camundongos Knockout , Microscopia Eletrônica , Técnicas de Patch-Clamp , Fosfoproteínas/metabolismo , Ratos , Ratos Sprague-Dawley , Transmissão Sináptica , Proteínas Wnt/genética
13.
Nat Rev Neurosci ; 6(5): 351-62, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15832199

RESUMO

WNT signalling has a key role in early embryonic patterning through the regulation of cell fate decisions, tissue polarity and cell movements. In the nervous system, WNT signalling also regulates neuronal connectivity by controlling axon pathfinding, axon remodelling, dendrite morphogenesis and synapse formation. Studies, from invertebrates to mammals, have led to a considerable understanding of WNT signal transduction pathways. This knowledge provides a framework for the study of the mechanisms by which WNTs regulate diverse neuronal functions. Manipulation of the WNT pathways could provide new strategies for nerve regeneration and neuronal circuit modulation.


Assuntos
Padronização Corporal/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Rede Nervosa/metabolismo , Fenômenos Fisiológicos do Sistema Nervoso , Neurônios/fisiologia , Transdução de Sinais/fisiologia , Vertebrados/fisiologia , Animais , Humanos , Rede Nervosa/citologia , Rede Nervosa/embriologia , Vertebrados/metabolismo , Proteínas Wnt
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA