Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Aesthet Surg J ; 40(4): 448-459, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-31504155

RESUMO

BACKGROUND: Tissue expanders are widely utilized in plastic surgery. Traditional expanders usually are "inflatable balloons," which are planned to grow additional skin and/or to create space to be filled, for example, with an implant. In very recent years, reports suggest that negative pressure created by an external device (ie, Brava) induces both skin expansion and adipogenesis. OBJECTIVES: The authors evaluated and assessed the adipogenetic potential of a novel internal tissue expander in an in vivo animal model. METHODS: New Zealand female rabbits were enrolled in the study. A prototype spiral inner tissue expander was employed. It consisted of a-dynamic conic expander (DCE) with a valve at the end: when empty, it is flat (Archimedean spiral), whereas when filled with a fluid, it takes a conic shape. Inside the conic spiral, a negative pressure is therefore created. DCE is implanted flat under the latissimus dorsi muscle in experimental animals (rabbit) and then filled to reach the conical shape. Animals were investigated with magnetic resonance imaging, histology, and transmission electronic microscopy at 3, 6, and 12 months. RESULTS: Magnetic resonance imaging revealed a marked increase in newly formed adipose tissue, reaching its highest amount at 12 months after the DCE implantation. Histology confirmed the existence of new adipocytes, whereas transmission electronic microscopy ultrastructure confirmed that most of these new cells were mature adipocytes. CONCLUSIONS: Tensile stress, associated with negative-pressure expanders, generated newly white subcutaneous adipose tissue.


Assuntos
Implantes de Mama , Procedimentos de Cirurgia Plástica , Tecido Adiposo , Animais , Feminino , Coelhos , Gordura Subcutânea , Expansão de Tecido , Dispositivos para Expansão de Tecidos
2.
Cell Death Dis ; 14(9): 638, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37758718

RESUMO

Despite intense research efforts, glioblastoma remains an incurable brain tumor with a dismal median survival time of 15 months. Thus, identifying new therapeutic targets is an urgent need. Here, we show that the lysine methyltransferase SETD8 is overexpressed in 50% of high-grade gliomas. The small molecule SETD8 inhibitor UNC0379, as well as siRNA-mediated inhibition of SETD8, blocked glioblastoma cell proliferation, by inducing DNA damage and activating cell cycle checkpoints. Specifically, in p53-proficient glioblastoma cells, SETD8 inhibition and DNA damage induced p21 accumulation and G1/S arrest whereas, in p53-deficient glioblastoma cells, DNA damage induced by SETD8 inhibition resulted in G2/M arrest mediated by Chk1 activation. Checkpoint abrogation, by the Wee1 kinase inhibitor adavosertib, induced glioblastoma cell lines and primary cells, DNA-damaged by UNC0379, to progress to mitosis where they died by mitotic catastrophe. Finally, UNC0379 and adavosertib synergized in restraining glioblastoma growth in a murine xenograft model, providing a strong rationale to further explore this novel pharmacological approach for adjuvant glioblastoma treatment.


Assuntos
Glioblastoma , Doenças do Recém-Nascido , Humanos , Animais , Camundongos , Recém-Nascido , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Apoptose , Proteína Supressora de Tumor p53 , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA