Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
Mol Cell ; 83(18): 3333-3346.e5, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37738964

RESUMO

The proteasome is responsible for removal of ubiquitinated proteins. Although several aspects of its regulation (e.g., assembly, composition, and post-translational modifications) have been unraveled, studying its adaptive compartmentalization in response to stress is just starting to emerge. We found that following amino acid starvation, the proteasome is translocated from its large nuclear pool to the cytoplasm-a response regulated by newly identified mTOR-agonistic amino acids-Tyr, Trp, and Phe (YWF). YWF relay their signal upstream of mTOR through Sestrin3 by disrupting its interaction with the GATOR2 complex. The triad activates mTOR toward its downstream substrates p62 and transcription factor EB (TFEB), affecting both proteasomal and autophagic activities. Proteasome translocation stimulates cytosolic proteolysis which replenishes amino acids, thus enabling cell survival. In contrast, nuclear sequestration of the proteasome following mTOR activation by YWF inhibits this proteolytic adaptive mechanism, leading to cell death, which establishes this newly identified pathway as a key stress-coping mechanism.


Assuntos
Aminoácidos Aromáticos , Complexo de Endopeptidases do Proteassoma , Sobrevivência Celular , Aminoácidos , Serina-Treonina Quinases TOR/genética
2.
Cell ; 161(2): 333-47, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25860612

RESUMO

NF-κB is a key transcriptional regulator involved in inflammation and cell proliferation, survival, and transformation. Several key steps in its activation are mediated by the ubiquitin (Ub) system. One uncharacterized step is limited proteasomal processing of the NF-κB1 precursor p105 to the p50 active subunit. Here, we identify KPC1 as the Ub ligase (E3) that binds to the ankyrin repeats domain of p105, ubiquitinates it, and mediates its processing both under basal conditions and following signaling. Overexpression of KPC1 inhibits tumor growth likely mediated via excessive generation of p50. Also, overabundance of p50 downregulates p65, suggesting that a p50-p50 homodimer may modulate transcription in place of the tumorigenic p50-p65. Transcript analysis reveals increased expression of genes associated with tumor-suppressive signals. Overall, KPC1 regulation of NF-κB1 processing appears to constitute an important balancing step among the stimulatory and inhibitory activities of the transcription factor in cell growth control.


Assuntos
Subunidade p50 de NF-kappa B/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Aminoácidos , Sistema Livre de Células , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Subunidade p50 de NF-kappa B/química , Neoplasias/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Estrutura Terciária de Proteína , Alinhamento de Sequência , Transdução de Sinais , Ubiquitina-Proteína Ligases/isolamento & purificação , Ubiquitinação
3.
Nat Rev Mol Cell Biol ; 16(5): 322-4, 2015 05.
Artigo em Inglês | MEDLINE | ID: mdl-25907614

RESUMO

Today, many scientific discoveries are made using a top-down experimental approach. The ubiquitin system was discovered using a 'classic' bottom-up approach to tackle the question: 'how are cellular proteins selectively degraded?' A simple proteolytic assay, which used a crude cell-extract, was all that was required to address this question; it was followed by fractionation and reconstitution experiments to decipher the role of the components in this multi-step process. This 'biochemistry at its best' approach, which was published in a periodical that today would not be regarded as highly visible, provided magnificent findings.


Assuntos
Proteólise , Ubiquitina/metabolismo , Animais , Humanos , Lisossomos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Reticulócitos/metabolismo , Ubiquitina/química , Complexos Ubiquitina-Proteína Ligase/metabolismo
4.
Mol Cell ; 75(5): 1058-1072.e9, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31375263

RESUMO

The endoplasmic reticulum (ER) is susceptible to wear-and-tear and proteotoxic stress, necessitating its turnover. Here, we show that the N-degron pathway mediates ER-phagy. This autophagic degradation initiates when the transmembrane E3 ligase TRIM13 (also known as RFP2) is ubiquitinated via the lysine 63 (K63) linkage. K63-ubiquitinated TRIM13 recruits p62 (also known as sequestosome-1), whose complex undergoes oligomerization. The oligomerization is induced when the ZZ domain of p62 is bound by the N-terminal arginine (Nt-Arg) of arginylated substrates. Upon activation by the Nt-Arg, oligomerized TRIM13-p62 complexes are separated along with the ER compartments and targeted to autophagosomes, leading to lysosomal degradation. When protein aggregates accumulate within the ER lumen, degradation-resistant autophagic cargoes are co-segregated by ER membranes for lysosomal degradation. We developed synthetic ligands to the p62 ZZ domain that enhance ER-phagy for ER protein quality control and alleviate ER stresses. Our results elucidate the biochemical mechanisms and pharmaceutical means that regulate ER homeostasis.


Assuntos
Proteínas de Transporte/metabolismo , Retículo Endoplasmático/metabolismo , Proteólise , Proteína Sequestossoma-1/metabolismo , Animais , Proteínas de Transporte/genética , Retículo Endoplasmático/genética , Células HEK293 , Células HeLa , Humanos , Camundongos , Camundongos Knockout , Proteína Sequestossoma-1/genética , Ubiquitinação
5.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34385323

RESUMO

Degradation of a protein by the ubiquitin-proteasome system (UPS) is a multistep process catalyzed by sequential reactions. Initially, ubiquitin is conjugated to the substrate in a process mediated by concerted activity of three enzymes; the last of them-a ubiquitin ligase (E3)-belongs to a family of several hundred members, each recognizing a few specific substrates. This is followed by repeated addition of ubiquitin moieties to the previously conjugated one to generate a ubiquitin chain that serves as a recognition element for the proteasome, which then degrades the substrate. Ubiquitin is recycled via the activity of deubiquitinating enzymes (DUBs). It stands to reason that efficiency of such a complex process would depend on colocalization of the different components in an assembly that allows the reactions to be carried out sequentially and processively. Here we describe nuclear condensates that are dynamic in their composition. They contain p62 as an essential component. These assemblies are generated by liquid-liquid phase separation (LLPS) and also contain ubiquitinated targets, 26S proteasome, the three conjugating enzymes, and DUBs. Under basal conditions, they serve as efficient centers for proteolysis of nuclear proteins (e.g., c-Myc) and unassembled subunits of the proteasome, suggesting they are involved in cellular protein quality control. Supporting this notion is the finding that such foci are also involved in degradation of misfolded proteins induced by heat and oxidative stresses, following recruitment of heat shock proteins and their associated ubiquitin ligase CHIP.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ubiquitina/metabolismo , Deleção de Genes , Regulação da Expressão Gênica/fisiologia , Células HeLa , Temperatura Alta , Humanos , Pressão Osmótica , Estresse Oxidativo , Complexo de Endopeptidases do Proteassoma/genética , Proteínas de Ligação a RNA/genética , Estresse Fisiológico , Ubiquitina/genética
6.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34873064

RESUMO

Nuclear factor κB (NF-κB) is an important transcriptional regulator that is involved in numerous cellular processes, including cell proliferation, immune response, cell survival, and malignant transformation. It relies on the ubiquitin-proteasome system (UPS) for several of the steps in the concerted cascade of its activation. Previously, we showed that the ubiquitin (Ub) ligase KPC1 is involved in ubiquitination and limited proteasomal processing of the NF-κB1 p105 precursor to generate the p50 active subunit of the "canonical" heterodimeric transcription factor p50-p65. Overexpression of KPC1 with the generation of an excessive amount of p50 was shown to suppress tumors, an effect which is due to multiple mechanisms. Among them are suppression of expression of programmed cell death-ligand 1 (PD-L1), overexpression of a broad array of tumor suppressors, and secretion of cytokines which results in recruitment of suppressive immune cells into the tumor. Here, we show that the site of KPC1 to which p105 binds is exceptionally short and is made up of the seven amino acids WILVRLW. Attachment of this short stretch to a small residual part (∼20%) of the ligase that also contains the essential Really Interesting New Gene (RING)-finger domain was sufficient to bind p105, conjugate to it Ub, and suppress tumor growth in an animal model. Fusion of the seven amino acids to a Von Hippel-Lindau protein (pVHL)-binding ligand (which serves as a "universal" ligase for many proteolysis-targeting chimeras; PROTACs) resulted in a compound that stimulated conjugation of Ub to p105 in a cell-free system and its processing to p50 in cells and restricted cell growth.


Assuntos
Subunidade p50 de NF-kappa B/metabolismo , NF-kappa B/metabolismo , Ubiquitina-Proteína Ligases/genética , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Humanos , NF-kappa B/genética , Neoplasias , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica/genética , Processamento de Proteína Pós-Traducional/fisiologia , Proteólise , Transdução de Sinais/fisiologia , Fator de Transcrição RelA/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/genética
7.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34893540

RESUMO

Cellular homeostasis requires the sensing of and adaptation to intracellular oxygen (O2) and reactive oxygen species (ROS). The Arg/N-degron pathway targets proteins that bear destabilizing N-terminal residues for degradation by the proteasome or via autophagy. Under normoxic conditions, the N-terminal Cys (Nt-Cys) residues of specific substrates can be oxidized by dioxygenases such as plant cysteine oxidases and cysteamine (2-aminoethanethiol) dioxygenases and arginylated by ATE1 R-transferases to generate Arg-CysO2(H) (R-CO2). Proteins bearing the R-CO2 N-degron are targeted via Lys48 (K48)-linked ubiquitylation by UBR1/UBR2 N-recognins for proteasomal degradation. During acute hypoxia, such proteins are partially stabilized, owing to decreased Nt-Cys oxidation. Here, we show that if hypoxia is prolonged, the Nt-Cys of regulatory proteins can be chemically oxidized by ROS to generate Arg-CysO3(H) (R-CO3), a lysosomal N-degron. The resulting R-CO3 is bound by KCMF1, a N-recognin that induces K63-linked ubiquitylation, followed by K27-linked ubiquitylation by the noncanonical N-recognin UBR4. Autophagic targeting of Cys/N-degron substrates is mediated by the autophagic N-recognin p62/SQTSM-1/Sequestosome-1 through recognition of K27/K63-linked ubiquitin (Ub) chains. This Cys/N-degron-dependent reprogramming in the proteolytic flux is important for cellular homeostasis under both chronic hypoxia and oxidative stress. A small-compound ligand of p62 is cytoprotective under oxidative stress through its ability to accelerate proteolytic flux of K27/K63-ubiquitylated Cys/N-degron substrates. Our results suggest that the Nt-Cys of conditional Cys/N-degron substrates acts as an acceptor of O2 to maintain both O2 and ROS homeostasis and modulates half-lives of substrates through either the proteasome or lysosome by reprogramming of their Ub codes.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Proteínas de Neoplasias/metabolismo , Estresse Oxidativo/fisiologia , Oxigênio/metabolismo , Animais , Autofagia , Linhagem Celular , Proteínas Ativadoras de GTPase/genética , Regulação da Expressão Gênica , Homeostase , Humanos , Interleucinas/genética , Interleucinas/metabolismo , Redes e Vias Metabólicas , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Oxirredução , Oxigênio/química
8.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732146

RESUMO

The ubiquitin-proteasome system (UPS) is an essential mechanism responsible for the selective degradation of substrate proteins via their conjugation with ubiquitin. Since cardiomyocytes have very limited self-renewal capacity, as they are prone to protein damage due to constant mechanical and metabolic stress, the UPS has a key role in cardiac physiology and pathophysiology. While altered proteasomal activity contributes to a variety of cardiac pathologies, such as heart failure and ischemia/reperfusion injury (IRI), the environmental cues affecting its activity are still unknown, and they are the focus of this work. Following a recent study by Ciechanover's group showing that amino acid (AA) starvation in cultured cancer cell lines modulates proteasome intracellular localization and activity, we tested two hypotheses in human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs, CMs): (i) AA starvation causes proteasome translocation in CMs, similarly to the observation in cultured cancer cell lines; (ii) manipulation of subcellular proteasomal compartmentalization is associated with electrophysiological abnormalities in the form of arrhythmias, mediated via altered intracellular Ca2+ handling. The major findings are: (i) starving CMs to AAs results in proteasome translocation from the nucleus to the cytoplasm, while supplementation with the aromatic amino acids tyrosine (Y), tryptophan (W) and phenylalanine (F) (YWF) inhibits the proteasome recruitment; (ii) AA-deficient treatments cause arrhythmias; (iii) the arrhythmias observed upon nuclear proteasome sequestration(-AA+YWF) are blocked by KB-R7943, an inhibitor of the reverse mode of the sodium-calcium exchanger NCX; (iv) the retrograde perfusion of isolated rat hearts with AA starvation media is associated with arrhythmias. Collectively, our novel findings describe a newly identified mechanism linking the UPS to arrhythmia generation in CMs and whole hearts.


Assuntos
Arritmias Cardíacas , Cálcio , Miócitos Cardíacos , Complexo de Endopeptidases do Proteassoma , Miócitos Cardíacos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Humanos , Cálcio/metabolismo , Animais , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/etiologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Estresse Fisiológico , Transporte Proteico , Ratos , Aminoácidos/metabolismo
9.
Cancer Cell Int ; 23(1): 67, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055826

RESUMO

Nuclear factor-ĸB (NF-ĸB) is an important transcriptional regulator of key cellular processes, including cell cycle, immune response, and malignant transformation. We found that the ubiquitin ligase Kip1 ubiquitination-promoting complex subunit 1 (KPC1; also known as Ring finger protein 123 - RNF123) stimulates ubiquitination and limited proteasomal processing of the p105 NF-ĸB precursor to generate p50, the active subunit of the heterodimeric transcription factor. KPC1 binds to the ankyrin repeats' (AR) domain of NF-ĸB p105 via a short binding site of 7 amino acids-968-WILVRLW-974. Though mature NF-ĸB is overexpressed and constitutively active in different tumors, we found that overexpression of the p50 subunit, exerts a strong tumor suppressive effect. Furthermore, excess of KPC1 that stimulates generation of p50 from the p105 precursor, also results in a similar effect. Analysis of transcripts of glioblastoma and breast tumors revealed that excess of p50 stimulates expression of many NF-ĸB-regulated tumor suppressive genes. Using human xenograft tumor models in different immune compromised mice, we demonstrated that the immune system plays a significant role in the tumor suppressive activity of p50:p50 homodimer stimulating the expression of the pro-inflammatory cytokines CCL3, CCL4, and CCL5 in both cultured cells and in the xenografts. Expression of these cytokines leads to recruitment of macrophages and NK cells, which restrict tumor growth. Finally, p50 inhibits the expression of the programmed cell death-ligand 1 (PDL1), establishing an additional level of a strong tumor suppressive response mediated by the immune system.

10.
Nat Rev Mol Cell Biol ; 12(9): 605-20, 2011 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-21860393

RESUMO

Ubiquitylation (also known as ubiquitination) regulates essentially all of the intracellular processes in eukaryotes through highly specific modification of numerous cellular proteins, which is often tightly regulated in a spatial and temporal manner. Although most often associated with proteasomal degradation, ubiquitylation frequently serves non-proteolytic functions. In light of its central roles in cellular regulation, it has not been surprising to find that many of the components of the ubiquitin system itself are regulated by ubiquitylation. This observation has broad implications for pathophysiology.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Ubiquitina/metabolismo , Ubiquitinação/fisiologia , Animais , Cadeia Alimentar , Humanos , Modelos Biológicos , Complexo de Endopeptidases do Proteassoma/fisiologia , Senso de Humor e Humor como Assunto
11.
Proc Natl Acad Sci U S A ; 117(47): 29823-29831, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33168738

RESUMO

Nuclear factor-ĸB (NF-ĸB) transcription factor is a family of essential regulators of the immune response and cell proliferation and transformation. A typical factor is a heterodimer made of either p50 or p52, which are limited processing products of either p105 or p100, respectively, and a member of the Rel family of proteins, typically p65. The transcriptional program of NF-ĸB is tightly regulated by the composition of the dimers. In our previous work, we demonstrated that the ubiquitin ligase KPC1 is involved in ubiquitination and proteasomal processing of p105 to generate p50. Its overexpression and the resulting high level of p50 stimulates transcription of a broad array of tumor suppressors. Here we demonstrate that additional mechanisms are involved in the p50-mediated tumor-suppressive effect. p50 down-regulates expression of a major immune checkpoint inhibitor, the programmed cell death-ligand 1 (PD-L1), both in cells and in tumors. Importantly, the suppression is abrogated by overexpression of p65. This highlights the importance of the cellular quantities of the two different subunits of NF-ĸB which determine the composition of the dimer. While the putative p50 homodimer is tumor-suppressive, the "canonical" p50p65 heterodimer is oncogenic. We found that an additional mechanism is involved in the tumor-suppressive phenomenon: p50 up-regulates expression of the proinflammatory chemokines CCL3, CCL4, and CCL5, which in turn recruit into the tumors active natural killer (NK) cells and macrophages. Overall, p50 acts as a strong tumor suppressor via multiple mechanisms, including overexpression of tumor suppressors and modulation of the tumor microenvironment by recruiting active immune cells.


Assuntos
Antígeno B7-H1/metabolismo , Regulação Neoplásica da Expressão Gênica/imunologia , Subunidade p50 de NF-kappa B/metabolismo , Neoplasias/genética , Ubiquitina-Proteína Ligases/metabolismo , Transferência Adotiva , Animais , Antígeno B7-H1/imunologia , Linhagem Celular Tumoral , Quimiocinas/imunologia , Quimiocinas/metabolismo , Células HEK293 , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/transplante , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Neoplasias/imunologia , Neoplasias/patologia , Cultura Primária de Células , Fator de Transcrição RelA/metabolismo , Ativação Transcricional/imunologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Ubiquitinação/genética , Ubiquitinação/imunologia , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Proc Natl Acad Sci U S A ; 117(31): 18661-18669, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32675242

RESUMO

Huntington's disease (HD) is a progressive incurable neurodegenerative disorder characterized by motor and neuropsychiatric symptoms. It is caused by expansion of a cytosine-adenine-guanine triplet in the N-terminal domain of exon 1 in the huntingtin (HTT) gene that codes for an expanded polyglutamine stretch in the protein product which becomes aggregation prone. The mutant Htt (mHtt) aggregates are associated with components of the ubiquitin-proteasome system, suggesting that mHtt is marked for proteasomal degradation and that, for reasons still debated, are not properly degraded. We used a novel HD rat model, proteomic analysis, and long-term live neuronal imaging to characterize the effects of ubiquitination on aggregation of mHtt and subsequent cellular responses. We identified two lysine residues, 6 and 9, in the first exon of mHtt that are specifically ubiquitinated in striatal and cortical brain tissues of mHtt-transgenic animals. Expression of mHtt exon 1 lacking these ubiquitination sites in cortical neurons and cultured cells was found to slow aggregate appearance rates and reduce their size but at the same time increase the number of much smaller and less visible ones. Importantly, expression of this form of mHtt was associated with elevated death rates. Proteomic analysis indicated that cellular reactions to mHtt expression were weaker in cells expressing the lysineless protein, possibly implying a reduced capacity to cope with the proteotoxic stress. Taken together, the findings suggest a novel role for ubiquitination-attenuation of the pathogenic effect of mHtt.


Assuntos
Proteína Huntingtina , Doença de Huntington , Ubiquitinação/fisiologia , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Morte Celular/fisiologia , Células Cultivadas , Modelos Animais de Doenças , Humanos , Proteína Huntingtina/química , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Lisina/química , Lisina/metabolismo , Neurônios/metabolismo , Complexo de Endopeptidases do Proteassoma , Agregação Patológica de Proteínas/metabolismo , Ratos , Ratos Transgênicos
13.
Int J Mol Sci ; 24(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37895057

RESUMO

This study investigated modifications to the ubiquitin proteasome system (UPS) in a mouse model of type 2 diabetes mellitus (T2DM) and their relationship to heart complications. db/db mice heart tissues were compared with WT mice tissues using RNA sequencing, qRT-PCR, and protein analysis to identify cardiac UPS modifications associated with diabetes. The findings unveiled a distinctive gene profile in the hearts of db/db mice with decreased levels of nppb mRNA and increased levels of Myh7, indicating potential cardiac dysfunction. The mRNA levels of USP18 (deubiquitinating enzyme), PSMB8, and PSMB9 (proteasome ß-subunits) were down-regulated in db/db mice, while the mRNA levels of RNF167 (E3 ligase) were increased. Corresponding LMP2 and LMP7 proteins were down-regulated in db/db mice, and RNF167 was elevated in Adult diabetic mice. The reduced expression of LMP2 and LMP7, along with increased RNF167 expression, may contribute to the future cardiac deterioration commonly observed in diabetes. This study enhances our understanding of UPS imbalances in the hearts of diabetic mice and raises questions about the interplay between the UPS and other cellular processes, such as autophagy. Further exploration in this area could provide valuable insights into the mechanisms underlying diabetic heart complications and potential therapeutic targets.


Assuntos
Complicações do Diabetes , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Cardiomiopatias Diabéticas , Camundongos , Animais , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/metabolismo , Complicações do Diabetes/complicações , RNA Mensageiro/genética
14.
Proc Natl Acad Sci U S A ; 116(16): 7805-7812, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30867293

RESUMO

One of the enigmas in the ubiquitin (Ub) field is the requirement for a poly-Ub chain as a proteasomal targeting signal. The canonical chain appears to be longer than the distance between the two Ub-binding proteasomal receptors. Furthermore, genetic manipulation has shown that one receptor subunit is sufficient, which suggests that a single Ub can serve as a degradation signal. To shed light on this mystery, we chemically synthesized tetra-Ub, di-Ub (K48-based), and mono-Ub adducts of HA-α-globin, where the distal or proximal Ub moieties were tagged differentially with either Myc or Flag. When incubated in a crude cell extract, the distal Ub moiety in the tetra-Ub adduct was mostly removed by deubiquitinating enzymes (DUBs) and reconjugated to other substrates in the extract. In contrast, the proximal moiety was most likely degraded with the substrate. The efficacy of degradation was proportionate to the chain length; while tetra-Ub globin was an efficient substrate, with mono-Ub globin, we observed rapid removal of the Ub moiety with almost no degradation of the free globin. Taken together, these findings suggest that the proximal moieties are necessary for securing the association of the substrate with the proteasome along the proteolytic process, whereas the distal moieties are important in protecting the proximal moieties from premature deubiquitination. Interestingly, when the same experiment was carried out using purified 26S proteasome, mono- and tetra-Ub globin were similarly degraded, highlighting the roles of the entire repertoire of cellular DUBs in regulating the degradation of proteasomal substrates.

15.
Trends Biochem Sci ; 42(11): 873-886, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28947091

RESUMO

The conjugation of the 76 amino acid protein ubiquitin to other proteins can alter the metabolic stability or non-proteolytic functions of the substrate. Once attached to a substrate (monoubiquitination), ubiquitin can itself be ubiquitinated on any of its seven lysine (Lys) residues or its N-terminal methionine (Met1). A single ubiquitin polymer may contain mixed linkages and/or two or more branches. In addition, ubiquitin can be conjugated with ubiquitin-like modifiers such as SUMO or small molecules such as phosphate. The diverse ways to assemble ubiquitin chains provide countless means to modulate biological processes. We overview here the complexity of the ubiquitin code, with an emphasis on the emerging role of linkage-specific degradation signals (degrons) in the ubiquitin-proteasome system (UPS) and the autophagy-lysosome system (hereafter autophagy).


Assuntos
Autofagia/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Humanos
16.
Biochem Biophys Res Commun ; 558: 224-230, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32933748

RESUMO

The NF-κB transcription factor is involved in inflammation and cell proliferation, survival, and transformation. It is a heterodimer made of p50 or p52 and a member of the Rel family of proteins. p50 and p52 are derived from limited ubiquitin- and proteasome-mediated proteolytic processing of the larger precursors p105 and p100, respectively. Both precursors can be either processed or completely degraded by the ubiquitin-proteasome system. Previous work in our laboratory identified KPC1 as a ubiquitin ligase that mediates processing of p105 to the p50 subunit. Overexpression of the ligase leads to increased level of p50 with a resultant marked tumor-suppressive effect. In the present study, we identify FBXO7, a known ubiquitin ligase that binds to p105 and ubiquitinates it, but surprisingly, leads to its accumulation and to that of p65 - the Rel partner of p50 - and to increased cell proliferation. Importantly, a ΔF-Box mutant of FBXO7 which is inactive has similar effects on accumulation of p105 and cell proliferation, strongly suggesting that p105 is a pseudo substrate of FBXO7.


Assuntos
Proteínas F-Box/metabolismo , Subunidade p50 de NF-kappa B/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Proliferação de Células/fisiologia , Estabilidade Enzimática , Proteínas F-Box/antagonistas & inibidores , Proteínas F-Box/genética , Células HEK293 , Células HeLa , Humanos , Células K562 , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Subunidade p50 de NF-kappa B/antagonistas & inibidores , Subunidade p50 de NF-kappa B/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Precursores de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Proteólise , RNA Interferente Pequeno/genética , Especificidade por Substrato , Fator de Transcrição RelA/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitinação
17.
Mol Cell ; 50(4): 528-39, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23665229

RESUMO

Ubiquitin-binding domains (UBDs) differentially recognize ubiquitin (ub) modifications. Some of them specifically bind mono-ub, as has been shown for the CUE domain. Interestingly, so far no significant ubiquitin binding has been observed for the CUE domain of yeast Cue1p. Cue1p is receptor and activator of the ubiquitin-conjugating enzyme Ubc7p. It integrates Ubc7p into endoplasmic reticulum (ER) membrane-bound ubiquitin ligase complexes, and thus, it is crucial for ER-associated protein degradation (ERAD). Here we show that the CUE domain of Cue1p binds ubiquitin chains, which is pivotal for the efficient formation of K48-linked polyubiquitin chains in vitro. Mutations that abolish ubiquitin binding by Cue1p affect the turnover of ERAD substrates in vivo. Our data strongly imply that the CUE domain facilitates substrate ubiquitylation by stabilizing growing ubiquitin chains at the ERAD ubiquitin ligases. Hence, we demonstrate an unexpected function of a UBD in the regulation of ubiquitin chain synthesis.


Assuntos
Proteínas de Transporte/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Eletroforese em Gel de Poliacrilamida , Lisina/genética , Lisina/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Dados de Sequência Molecular , Mutação , Poliubiquitina/metabolismo , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
18.
Proc Natl Acad Sci U S A ; 115(12): E2716-E2724, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29507222

RESUMO

The conjugation of amino acids to the protein N termini is universally observed in eukaryotes and prokaryotes, yet its functions remain poorly understood. In eukaryotes, the amino acid l-arginine (l-Arg) is conjugated to N-terminal Asp (Nt-Asp), Glu, Gln, Asn, and Cys, directly or associated with posttranslational modifications. Following Nt-arginylation, the Nt-Arg is recognized by UBR boxes of N-recognins such as UBR1, UBR2, UBR4/p600, and UBR5/EDD, leading to substrate ubiquitination and proteasomal degradation via the N-end rule pathway. It has been a mystery, however, why studies for the past five decades identified only a handful of Nt-arginylated substrates in mammals, although five of 20 principal amino acids are eligible for arginylation. Here, we show that the Nt-Arg functions as a bimodal degron that directs substrates to either the ubiquitin (Ub)-proteasome system (UPS) or macroautophagy depending on physiological states. In normal conditions, the arginylated forms of proteolytic cleavage products, D101-CDC6 and D1156-BRCA1, are targeted to UBR box-containing N-recognins and degraded by the proteasome. However, when proteostasis by the UPS is perturbed, their Nt-Arg redirects these otherwise cellular wastes to macroautophagy through its binding to the ZZ domain of the autophagic adaptor p62/STQSM/Sequestosome-1. Upon binding to the Nt-Arg, p62 acts as an autophagic N-recognin that undergoes self-polymerization, facilitating cargo collection and lysosomal degradation of p62-cargo complexes. A chemical mimic of Nt-Arg redirects Ub-conjugated substrates from the UPS to macroautophagy and promotes their lysosomal degradation. Our results suggest that the Nt-Arg proteome of arginylated proteins contributes to reprogramming global proteolytic flux under stresses.


Assuntos
Arginina/metabolismo , Autofagia/fisiologia , Proteínas de Ciclo Celular/metabolismo , Proteínas Nucleares/metabolismo , Proteólise , Proteínas de Ligação a RNA/metabolismo , Aminoaciltransferases/genética , Aminoaciltransferases/metabolismo , Animais , Autofagia/efeitos dos fármacos , Proteína BRCA1/metabolismo , Feminino , Células HEK293 , Células HeLa , Humanos , Hidroxicloroquina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Complexo de Endopeptidases do Proteassoma/metabolismo , Domínios Proteicos , Ubiquitina/metabolismo
20.
Chemistry ; 26(36): 8022-8027, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32105365

RESUMO

Messenger RNA display of peptides containing non-proteinogenic amino acids, referred to as RaPID system, has become one of the leading methods to express libraries consisting of more than trillion-members of macrocyclic peptides, which allows for discovering de novo bioactive ligands. Ideal macrocyclic peptides should have dissociation constants (KD ) as low as single-digit values in the nanomolar range towards a specific target of interest. Here, a twofold strategy to discover optimized macrocyclic peptides within this affinity regime is described. First, benzyl thioether cyclized peptide libraries were explored to identify tight binding hits. To obtain more insights into critical sequence information, sequence alignment was applied to guide rational mutagenesis for the improvement of their binding affinity. Using this twofold strategy, benzyl thioether macrocyclic peptide binders against Lys48-linked ubiquitin dimer (K48-Ub2) were successfully obtained that display KD values in the range 0.3-1.2 nm, which indicate binding two orders of magnitude stronger than those of macrocyclic peptides recently reported. Most importantly, this macrocyclic peptide also showed an improved cellular inhibition of the K48-Ub2 recognition by deubiquitinating enzymes and the 26S proteasome, resulting in the promotion of apoptosis in cancer cells.


Assuntos
Aminoácidos/química , Peptídeos/química , Complexo de Endopeptidases do Proteassoma/química , Humanos , Biblioteca de Peptídeos , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Alinhamento de Sequência , Ubiquitinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA