Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36769342

RESUMO

Our previous research suggests an important regulatory role of CK2-mediated phosphorylation of enzymes involved in the thymidylate biosynthesis cycle, i.e., thymidylate synthase (TS), dihydrofolate reductase (DHFR), and serine hydroxymethyltransferase (SHMT). The aim of this study was to show whether silencing of the CK2α gene affects TS and DHFR expression in A-549 cells. Additionally, we attempted to identify the endogenous kinases that phosphorylate TS and DHFR in CCRF-CEM and A-549 cells. We used immunodetection, immunofluorescence/confocal analyses, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), in-gel kinase assay, and mass spectrometry analysis. Our results demonstrate that silencing of the CK2α gene in lung adenocarcinoma cells significantly increases both TS and DHFR expression and affects their cellular distribution. Additionally, we show for the first time that both TS and DHFR are very likely phosphorylated by endogenous CK2 in two types of cancer cells, i.e., acute lymphoblastic leukaemia and lung adenocarcinoma. Moreover, our studies indicate that DHFR is phosphorylated intracellularly by CK2 to a greater extent in leukaemia cells than in lung adenocarcinoma cells. Interestingly, in-gel kinase assay results indicate that the CK2α' isoform was more active than the CK2α subunit. Our results confirm the previous studies concerning the physiological relevance of CK2-mediated phosphorylation of TS and DHFR.


Assuntos
Adenocarcinoma de Pulmão , Tetra-Hidrofolato Desidrogenase , Humanos , Fosforilação , Tetra-Hidrofolato Desidrogenase/química , Timidilato Sintase/metabolismo
2.
Medicina (Kaunas) ; 59(11)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38004055

RESUMO

Breast cancer (BC) is a heterogeneous disease distinguished by four main subtypes based on the expression of estrogen, progesterone receptors, and human epidermal growth factor-2 on the cancer cells. Triple-negative breast cancer (TNBC) consists of approximately 10-20% of all BCs and is characterized by a poor prognosis. Adenoid cystic carcinoma (ACC) of the breast is a rare, special type of TNBC with low metastatic potential and usually favorable prognosis. There are no established recommendations concerning systemic therapy in advanced ACC. We present a case of a 70-year-old woman with locally advanced ACC with progression after radical mastectomy, and review the literature concerning the treatment of metastatic disease focused on systemic therapy.


Assuntos
Neoplasias da Mama , Carcinoma Adenoide Cístico , Neoplasias de Mama Triplo Negativas , Feminino , Humanos , Idoso , Neoplasias da Mama/patologia , Mastectomia , Carcinoma Adenoide Cístico/cirurgia , Carcinoma Adenoide Cístico/metabolismo , Carcinoma Adenoide Cístico/patologia , Mama , Prognóstico
3.
Int J Mol Sci ; 22(5)2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33800923

RESUMO

A homo-dimeric enzyme, thymidylate synthase (TS), has been a long-standing molecular target in chemotherapy. To further elucidate properties and interactions with ligands of wild-type mouse thymidylate synthase (mTS) and its two single mutants, H190A and W103G, spectroscopic and theoretical investigations have been employed. In these mutants, histidine at position 190 and tryptophan at position 103 are substituted with alanine and glycine, respectively. Several emission-based spectroscopy methods used in the paper demonstrate an especially important role for Trp 103 in TS ligands binding. In addition, the Advanced Poisson-Boltzmann Solver (APBS) results show considerable differences in the distribution of electrostatic potential around Trp 103, as compared to distributions observed for all remaining Trp residues in the mTS family of structures. Together, spectroscopic and APBS results reveal a possible interplay between Trp 103 and His190, which contributes to a reduction in enzymatic activity in the case of H190A mutation. Comparison of electrostatic potential for mTS complexes, and their mutants, with the substrate, dUMP, and inhibitors, FdUMP and N4-OH-dCMP, suggests its weaker influence on the enzyme-ligand interactions in N4OH-dCMP-mTS compared to dUMP-mTS and FdUMP-mTS complexes. This difference may be crucial for the explanation of the "abortive reaction" inhibitory mechanism of N4OH-dCMP towards TS. In addition, based on structural analyses and the H190A mutant capacity to form a denaturation-resistant complex with N4-OH-dCMP in the mTHF-dependent reaction, His190 is apparently responsible for a strong preference of the enzyme active center for the anti rotamer of the imino inhibitor form.


Assuntos
Nucleotídeos de Desoxiuracil/metabolismo , Modelos Teóricos , Espectrometria de Fluorescência/métodos , Eletricidade Estática , Timidilato Sintase/metabolismo , Substituição de Aminoácidos , Animais , Desoxicitidina Monofosfato/análogos & derivados , Desoxicitidina Monofosfato/metabolismo , Nucleotídeos de Desoxiuracil/química , Fluordesoxiuridilato/metabolismo , Camundongos , Modelos Moleculares , Análise Multivariada , Conformação Proteica , Timidilato Sintase/química
4.
Biochem Biophys Res Commun ; 513(2): 368-373, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-30961929

RESUMO

Dihydrofolate reductase (DHFR) is a prominent molecular target in antitumor, antibacterial, antiprotozoan, and immunosuppressive chemotherapies, and CK2 protein kinase is an ubiquitous enzyme involved in many processes, such as tRNA and rRNA synthesis, apoptosis, cell cycle or oncogenic transformation. We show for the first time that CK2α subunit strongly interacted with and phosphorylated DHFR in vitro. Using quartz crystal microbalance with dissipation monitoring (QCM-D) we determined DHFR-CK2α binding kinetic parameters (Kd below 0.5 µM, kon = 10.31 × 104 M-1s-1 and koff = 1.40 × 10-3s-1) and calculated Gibbs free energy (-36.4 kJ/mol). In order to identify phosphorylation site(s) we used site-directed mutagenesis to obtain several DHFR mutants with predicted CK2-phosphorylable serine or threonine residues substituted with alanines. All enzyme forms were subjected to CK2α subunit catalytic activity and the results pointed to serine 168 as a phosphorylation site. Mass spectrometry analyses confirmed the presence of phosphoserine 168 and revealed additionally the presence of phosphoserine 145, although the latter phosphorylation was on a very low level.


Assuntos
Tetra-Hidrofolato Desidrogenase/metabolismo , Caseína Quinase II/química , Caseína Quinase II/metabolismo , Domínio Catalítico , Humanos , Cinética , Fosforilação , Ligação Proteica , Mapas de Interação de Proteínas , Especificidade por Substrato
5.
Biochim Biophys Acta ; 1854(12): 1922-1934, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26315778

RESUMO

Thymidylate synthase (TS) may undergo phosphorylation endogenously in mammalian cells, and as a recombinant protein expressed in bacterial cells, as indicated by the reaction of purified enzyme protein with Pro-Q® Diamond Phosphoprotein Gel Stain (PGS). With recombinant human, mouse, rat, Trichinella spiralis and Caenorhabditis elegans TSs, expressed in Escherichia coli, the phosphorylated, compared to non-phosphorylated recombinant enzyme forms, showed a decrease in Vmax(app), bound their cognate mRNA (only rat enzyme studied), and repressed translation of their own and several heterologous mRNAs (human, rat and mouse enzymes studied). However, attempts to determine the modification site(s), whether endogenously expressed in mammalian cells, or recombinant proteins, did not lead to unequivocal results. Comparative ESI-MS/analysis of IEF fractions of TS preparations from parental and FdUrd-resistant mouse leukemia L1210 cells, differing in sensitivity to inactivation by FdUMP, demonstrated phosphorylation of Ser(10) and Ser(16) in the resistant enzyme only, although PGS staining pointed to the modification of both L1210 TS proteins. The TS proteins phosphorylated in bacterial cells were shown by (31)P NMR to be modified only on histidine residues, like potassium phosphoramidate (KPA)-phosphorylated TS proteins. NanoLC-MS/MS, enabling the use of CID and ETD peptide fragmentation methods, identified several phosphohistidine residues, but certain phosphoserine and phosphothreonine residues were also implicated. Molecular dynamics studies, based on the mouse TS crystal structure, allowed one to assess potential of several phosphorylated histidine residues to affect catalytic activity, the effect being phosphorylation site dependent.


Assuntos
Timidilato Sintase/metabolismo , Animais , Linhagem Celular Tumoral , Camundongos , Fosforilação , Coelhos
6.
Bioorg Chem ; 52: 44-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24321279

RESUMO

Crystal structure is presented of the binary complex between potassium phosphoramidate-phosphorylated recombinant C. elegans thymidylate synthase and dUMP. On each monomer a single phosphoserine residue (Ser127) was identified, instead of expected phosphohistidine. As (31)P NMR studies of both the phosphorylated protein and of potassium phosphoramidate potential to phosphorylate different amino acids point to histidine as the only possible site of the modification, thermodynamically favored intermolecular phosphotransfer from histidine to serine is suggested.


Assuntos
Fosforamidas/química , Fosfosserina/química , Timidilato Sintase/química , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/enzimologia , Cristalização , Cristalografia por Raios X , Nucleotídeos de Desoxiuracil/química , Histidina/análogos & derivados , Histidina/química , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Fosforilação , Conformação Proteica , Proteínas Recombinantes/química , Timidilato Sintase/metabolismo
7.
Org Biomol Chem ; 10(2): 323-31, 2012 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-22072032

RESUMO

Highly purified preparations of thymidylate synthase, isolated from calf thymus, and L1210 parental and FdUrd-resistant cells, were found to be nitrated, as indicated by a specific reaction with anti-nitro-tyrosine antibodies, suggesting this modification to appear endogenously in normal and tumor tissues. Each human, mouse and Ceanorhabditis elegans recombinant TS preparation, incubated in vitro in the presence of NaHCO(3), NaNO(2) and H(2)O(2) at pH 7.5, underwent tyrosine nitration, leading to a V(max)(app) 2-fold lower following nitration of 1 (with human or C. elegans TS) or 2 (with mouse TS) tyrosine residues per monomer. Enzyme interactions with dUMP, meTHF or 5-fluoro-dUMP were not distinctly influenced. Nitration under the same conditions of model tripeptides of a general formula H(2)N-Gly-X-Gly-COOH (X = Phe, Tyr, Trp, Lys, Arg, His, Ser, Thr, Cys, Gly), monitored by NMR spectroscopy, showed formation of nitro-species only for H-Gly-Tyr-Gly-OH and H-Gly-Phe-Gly-OH peptides, the chemical shifts for nitrated H-Gly-Tyr-Gly-OH peptide being in a very good agreement with the strongest peak found in (15)N-(1)H HMBC spectrum of nitrated protein. MS analysis of nitrated human and C. elegans proteins revealed several thymidylate synthase-derived peptides containing nitro-tyrosine (at positions 33, 65, 135, 213, 230, 258 and 301 in the human enzyme) and oxidized cysteine (human protein Cys(210), with catalytically critical Cys(195) remaining apparently unmodified) residues.


Assuntos
Timidilato Sintase/metabolismo , Tirosina/metabolismo , Animais , Caenorhabditis elegans/enzimologia , Bovinos , Linhagem Celular Tumoral , Humanos , Camundongos , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Timidilato Sintase/química , Timidilato Sintase/isolamento & purificação , Timo/enzimologia , Tirosina/química
8.
Front Mol Biosci ; 9: 847829, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281258

RESUMO

Thymidylate synthase (TS), dihydrofolate reductase (DHFR), and serine hydroxymethyltransferase (SHMT) constitute the thymidylate synthesis cycle providing thymidylate for DNA synthesis and repair. Our previous studies indicated that TS and DHFR are the substrates of protein kinase CK2. This work has been aimed at the elucidation of the effect of CK2 activity on cell cycle progression, thymidylate synthesis enzyme expression and localization, and the role of CK2-mediated TS phosphorylation in in vitro di- and trimolecular complex formation. The results were obtained by means of western blot, confocal microscopy, flow cytometry, quantitative polymerase chain reaction (QPCR), quartz crystal microbalance with dissipation monitoring (QCM-D), and microthermophoresis (MST). Our research indicates that CK2 inhibition does not change the levels of the transcripts; however, it affects the protein levels of DHFR and TS in both tested cell lines, i.e., A549 and CCRF-CEM, and the level of SHMT1 in CCRF-CEM cells. Moreover, we show that CK2-mediated phosphorylation of TS enables the protein (pTS) interaction with SHMT1 and leads to the stability of the tri-complex containing SHMT1, DHFR, and pTS. Our results suggest an important regulatory role of CK2-mediated phosphorylation for inter- and intracellular protein level of enzymes involved in the thymidylate biosynthesis cycle.

9.
Sci Rep ; 11(1): 11144, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34045551

RESUMO

E. coli purine nucleoside phosphorylase is a homohexamer, which structure, in the apo form, can be described as a trimer of dimers. Earlier studies suggested that ligand binding and kinetic properties are well described by two binding constants and two sets of kinetic constants. However, most of the crystal structures of this enzyme complexes with ligands do not hold the three-fold symmetry, but only two-fold symmetry, as one of the three dimers is different (both active sites in the open conformation) from the other two (one active site in the open and one in the closed conformation). Our recent detailed studies conducted over broad ligand concentration range suggest that protein-ligand complex formation in solution actually deviates from the two-binding-site model. To reveal the details of interactions present in the hexameric molecule we have engineered a single tryptophan Y160W mutant, responding with substantial intrinsic fluorescence change upon ligand binding. By observing various physical properties of the protein and its various complexes with substrate and substrate analogues we have shown that indeed three-binding-site model is necessary to properly describe binding of ligands by both the wild type enzyme and the Y160W mutant. Thus we have pointed out that a symmetrical dimer with both active sites in the open conformation is not forced to adopt this conformation by interactions in the crystal, but most probably the dimers forming the hexamer in solution are not equivalent as well. This, in turn, implies that an allosteric cooperation occurs not only within a dimer, but also among all three dimers forming a hexameric molecule.


Assuntos
Escherichia coli/genética , Mutação , Purina-Núcleosídeo Fosforilase/genética , Triptofano/genética , Sítios de Ligação , Escherichia coli/metabolismo , Modelos Moleculares , Conformação Proteica , Purina-Núcleosídeo Fosforilase/metabolismo
10.
Bioorg Chem ; 38(3): 124-31, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20199796

RESUMO

Thymidylate synthase (TS) was found to be a substrate for both catalytic subunits of human CK2, with phosphorylation by CK2alpha and CK2alpha' characterized by similar K(m) values, 4.6microM and 4.2microM, respectively, but different efficiencies, the apparent turnover number with CK2alpha being 10-fold higher. With both catalytic subunits, phosphorylation of human TS, like calmodulin and BID, was strongly inhibited in the presence of the regulatory subunit CK2beta, the holoenzyme being activated by polylysine. Phosphorylation of recombinant human, rat, mouse and Trichinella spiralis TSs proteins was compared, with the human enzyme being apparently a much better substrate than the others. Following hydrolysis and TLC, phosphoserine was detected in human and rat, and phosphotyrosine in T. spiralis, TS, used as substrates for CK2alpha. MALDI-TOF MS analysis led to identification of phosphorylated Ser(124) in human TS, within a sequence LGFS(124)TREEGD, atypical for a CK2 substrate recognition site. The phosphorylation site is located in a region considered important for the catalytic mechanism or regulation of human TS, corresponding to the loop 107-128. Following phosphorylation by CK2alpha, resulting in incorporation of 0.4mol of phosphate per mol of dimeric TS, human TS exhibits unaltered K(m) values for dUMP and N(5,10)-methylenetetrahydrofolate, but a 50% lower turnover number, pointing to a strong influence of Ser(124) phosphorylation on its catalytic efficiency.


Assuntos
Caseína Quinase II/química , Timidilato Sintase/química , Sequência de Aminoácidos , Animais , Caseína Quinase II/metabolismo , Domínio Catalítico , Humanos , Cinética , Camundongos , Dados de Sequência Molecular , Fosforilação , Estrutura Terciária de Proteína , Subunidades Proteicas/metabolismo , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Timidilato Sintase/genética , Timidilato Sintase/metabolismo
11.
Bioorg Chem ; 38(2): 74-80, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20018341

RESUMO

In search of an activity-preserving protein thiophosphorylation method, with thymidylate synthase recombinant protein used as a substrate, potassium thiophosphoramidate and diammonium thiophosphoramidate salts in Tris- and ammonium carbonate based buffer solutions were employed, proving to serve as a non-destructive environment. Using potassium phosphoramidate or diammonium thiophosphoramidate, a series of phosphorylated and thiophosphorylated amino acid derivatives was prepared, helping, together with computational (using density functional theory, DFT) estimation of (31)P NMR chemical shifts, to assign thiophosphorylated protein NMR resonances and prove the presence of thiophosphorylated lysine, serine and histidine moieties. Methods useful for prediction of (31)P NMR chemical shifts of thiophosphorylated amino acid moieties, and thiophosphates in general, are also presented. The preliminary results obtained from trypsin digestion of enzyme shows peak at m/z 1825.805 which is in perfect agreement with the simulated isotopic pattern distributions for monothiophosphate of TVQQQVHLNQDEYK where thiophosphate moiety is attached to histidine (His(26)) or lysine (Lys(33)) side-chain.


Assuntos
Aminoácidos/química , Íons/química , Fosfatos/química , Timidilato Sintase/química , Amidas/química , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/enzimologia , Histidina/química , Humanos , Lisina/química , Espectroscopia de Ressonância Magnética , Ácidos Fosfóricos/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Timidilato Sintase/metabolismo , Tripsina/metabolismo
12.
J Oncol ; 2020: 7267083, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508921

RESUMO

Breast cancer is the most common malignancy, affecting middle-age and older women frequently suffering from other chronic diseases, including chronic kidney disease. The risk of breast cancer development in women on renal replacement therapy (peritoneal dialysis and haemodialysis) is higher than in the general population. Chronic kidney disease does not limit surgical treatment or radiotherapy; however, it affects the pharmacokinetics of drugs used in the systematic treatment to a different extent, increasing their toxicity and the risk of adverse drug reactions. This article summarizes the current knowledge (published studies accessed through PUBMED) on drugs used in chemotherapy, hormone therapy, anti-HER2 drugs, CDK4/6 inhibitors, PARP inhibitors, and immune therapy in breast cancer patients undergoing dialysis. We discuss the data, the optimal choice of the chemotherapeutic protocol, and the administration of drugs in a specific time relation to the haemodialysis session to ensure the most effective and safe treatment to breast cancer patients.

13.
Anticancer Res ; 39(7): 3531-3542, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31262877

RESUMO

BACKGROUND/AIM: Recently, we demonstrated the ability of inhibitors of protein kinase 2 (casein kinase II; CK2) to enhance the efficacy of 5-fluorouracil, a thymidylate synthase (TYMS)-directed drug for anticancer treatment. The present study aimed to investigate the antileukemic effect of simultaneous inhibition of dihydrofolate reductase (DHFR), another enzyme involved in the thymidylate biosynthesis cycle, and CK2 in CCRF-CEM acute lymphoblastic leukemia cells. MATERIALS AND METHODS: The influence of combined treatment on apoptosis and cell-cycle progression, as well as the endocellular level of DHFR protein and inhibition of CK2 were determined using flow cytometry and western blot analysis, respectively. Real-time quantitative polymerase chain reaction was used to examine the influence of silmitasertib (CX-4945), a selective inhibitor of CK2 on the expression of DHFR and TYMS genes. RESULTS: The synergistic effect was correlated with the increase of annexin V-binding cell fraction, caspase 3/7 activation and a significant reduce in the activity of CK2. An increase of DHFR protein level was observed in CCRF-CEM cells after CX-4945 treatment, with the mRNA level remaining relatively constant. CONCLUSION: The obtained results demonstrate a possibility to improve methotrexate-based anti-leukemia therapy by simultaneous inhibition of CK2. The effect of CK2 inhibition on DHFR expression suggests the important regulatory role of CK2-mediated phosphorylation of DHFR inside cells.


Assuntos
Antineoplásicos/farmacologia , Antagonistas do Ácido Fólico/farmacologia , Metotrexato/farmacologia , Naftiridinas/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Apoptose/efeitos dos fármacos , Caseína Quinase II/antagonistas & inibidores , Linhagem Celular Tumoral , Sinergismo Farmacológico , Humanos , Fenazinas , Tetra-Hidrofolato Desidrogenase/metabolismo
14.
Biochimie ; 148: 80-86, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29499297

RESUMO

A steady-state absorption and emission spectroscopy was used to create a comprehensive work and to study the interaction of the wild type Escherichia coli purine nucleoside phosphorylase and its mutants, PNPF159Y and PNPF159A, with a potent E. coli PNP inhibitor - formycin A. The absorption and emission spectra were recorded in the presence and absence of the phosphate at the 50 mM concentration. From the collected sets of data dissociation constants (Kd), apparent dissociation constants (Kapp) and Hill's coefficients (h) were calculated. Additionally, the temperature dependence of the enzymes emission quenching at two temperatures, 10 °C and 25 °C, was examined. To verify the calculations, total difference absorption spectra were computed for all types of the complexes. A prominent quenching of the PNPF159Y emission indicates a complex formation, with the strongest association in the phosphate buffer, pH 7, relative to the wild type enzyme. On the other hand, results testify to a deterioration of the interactions in the E. coli PNP/PNPF159Y and formycin A complexes in the presence of the phosphate, pH 8.3. Moreover, data obtained for the PNPF159A-FA complexes confirm a weak association of the FA to the mutant's active center.


Assuntos
Substituição de Aminoácidos , Escherichia coli/enzimologia , Formicinas/metabolismo , Fenilalanina , Fosfatos/farmacologia , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/metabolismo , Concentração de Íons de Hidrogênio , Mutação , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Purina-Núcleosídeo Fosforilase/química
15.
Anticancer Res ; 38(8): 4617-4627, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30061228

RESUMO

BACKGROUND/AIM: Protein kinase CK2 was recently identified as a promising therapeutic target for combination therapy. Our study aims to investigate the anticancer effect of a simultaneous inhibition of thymidylate synthase (TS) and CK2 in MCF-7 breast cancer and CCRF-CEM leukemia cells. MATERIALS AND METHODS: The type of interaction between CK2 inhibitors: CX-4945, 4,5,6,7-tetrabromo-1H-benzimidazole (TBBi), or recently obtained 4,5,6,7-tetrabromo-2-methyl-1H-benzimidazol-1-yl)acetonitrile (2b) and TS-directed anticancer drug, 5-fluorouracil (5-FU) was determined using the MTT assay and a combination index method. The influence of the combined treatment on apoptosis in leukemia cells, as well as on cell-cycle progression and the levels of TS, CK2α and P-Ser529-p65 were determined in both cell lines, using flow cytometry and western blot analysis, respectively. RESULTS: The best synergistic effect was observed in CCRF-CEM cell line with the combination of 5-FU and 2b which correlated with a decrease in the endocellular CK2 activity and enhancement of the pro-apoptotic effect. CONCLUSION: The obtained results demonstrate the ability of CK2 inhibitors to enhance the efficacy of 5-FU in anticancer treatment, indicating a different molecular mechanism of the studied CK2 inhibitors interaction with 5-FU.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Leucemia/tratamento farmacológico , Timidilato Sintase/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Benzimidazóis/farmacologia , Neoplasias da Mama/metabolismo , Caseína Quinase II/antagonistas & inibidores , Linhagem Celular Tumoral , Feminino , Fluoruracila/farmacologia , Humanos , Leucemia/metabolismo , Células MCF-7 , Naftiridinas/farmacologia , Fenazinas , Inibidores de Proteínas Quinases/farmacologia
16.
Wiad Lek ; 60(1-2): 83-6, 2007.
Artigo em Polonês | MEDLINE | ID: mdl-17607975

RESUMO

We report an 18-year old patient with hypochromic anaemia and subfebriles states and long-persisting despite symptomatic treatment. On admission he presented body proportions similar to Marfan syndrome. Hypochromic anaemia and positive inflammatory markers were present along with negative results of serologic and microbiological assays. Hormonal parameters, as well as karyotype were normal. Among several imagining procedures, ultrasound and CT of the abdomen revealed areas in the spleen suggestive of proliferative disease or abscesses. Bone marrow examination was normal. Because of high probability of the disease limited to the spleen and deteriorating clinical state of the patient, splenectomy was performed. After the operation significant improvement of the health state of the patient was observed. Histopathological evaluation showed splenic abscesses. However, anamnesis and accessory examinations did not reveal their etiology. This report is an example of possible difficulties in diagnosing splenic abscesses, as well as supports grounds for surgical intervention in chosen cases.


Assuntos
Abscesso/diagnóstico por imagem , Esplenopatias/diagnóstico por imagem , Abscesso/cirurgia , Adolescente , Infecções Bacterianas , Diagnóstico Diferencial , Seguimentos , Humanos , Inflamação , Masculino , Neoplasias/diagnóstico por imagem , Baço/diagnóstico por imagem , Esplenectomia , Esplenopatias/cirurgia , Tomografia Computadorizada por Raios X , Resultado do Tratamento
17.
Biophys Chem ; 230: 99-108, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28947300

RESUMO

The aim of this study is threefold: (1) augmentation of the knowledge of the E. coli PNP binding mechanism; (2) explanation of the previously observed 'lack of FRET' phenomenon and (3) an introduction of the correction (modified method) for FRET efficiency calculation in the PNP-FA complexes. We present fluorescence studies of the two E. coli PNP mutants (F159Y and F159A) with formycin A (FA), that indicate that the aromatic amino acid is indispensable in the nucleotide binding, additional hydroxyl group at position 159 probably enhances the strength of binding and that the amino acids pair 159-160 has a great impact on the spectroscopic properties of the enzyme. The experiments were carried out in hepes and phosphate buffers, at pH7 and 8.3. Two methods, a conventional and a modified one, that utilizes the dissociation constant, for calculations of the energy transfer efficiency (E) and the acceptor-to-donor distance (r) between FA and the Tyr (energy donor) were employed. Total difference spectra were calculated for emission spectra (λex 280nm, 295nm, 305nm and 313nm) for all studied systems. Time-resolved techniques allowed to conclude the existence of a specific structure formed by amino acids at positions 159 and 160. The results showed an unexpected pattern change of FRET in the mutants, when compared to the wild type enzyme and a probable presence of a structure created between 159 and 160 residue, that might influence the binding efficiency. Additionally, we confirmed the indispensable role of the modification of the FRET efficiency (E) calculation on the fraction of enzyme saturation in PNP-FA systems.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Formicinas/metabolismo , Purina-Núcleosídeo Fosforilase/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Transferência Ressonante de Energia de Fluorescência , Formicinas/química , Concentração de Íons de Hidrogênio , Cinética , Mutagênese Sítio-Dirigida , Ligação Proteica , Estrutura Terciária de Proteína , Purina-Núcleosídeo Fosforilase/química , Purina-Núcleosídeo Fosforilase/genética , Espectrometria de Fluorescência , Temperatura
18.
J Biomol Struct Dyn ; 35(7): 1474-1490, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27187663

RESUMO

Enzymes involved in thymidylate biosynthesis, thymidylate synthase (TS), and dihydrofolate reductase (DHFR) are well-known targets in cancer chemotherapy. In this study, we demonstrated for the first time, that human TS and DHFR form a strong complex in vitro and co-localize in human normal and colon cancer cell cytoplasm and nucleus. Treatment of cancer cells with methotrexate or 5-fluorouracil did not affect the distribution of either enzyme within the cells. However, 5-FU, but not MTX, lowered the presence of DHFR-TS complex in the nucleus by 2.5-fold. The results may suggest the sequestering of TS by FdUMP in the cytoplasm and thereby affecting the translocation of DHFR-TS complex to the nucleus. Providing a strong likelihood of DHFR-TS complex formation in vivo, the latter complex is a potential new drug target in cancer therapy. In this paper, known 3D structures of human TS and human DHFR, and some protozoan bifunctional DHFR-TS structures as templates, are used to build an in silico model of human DHFR-TS complex structure, consisting of one TS dimer and two DHFR monomers. This complex structure may serve as an initial 3D drug target model for prospective inhibitors targeting interfaces between the DHFR and TS enzymes.


Assuntos
Antimetabólitos Antineoplásicos/química , DNA/química , Fibroblastos/enzimologia , Fluoruracila/química , Metotrexato/química , Complexos Multienzimáticos/química , Tetra-Hidrofolato Desidrogenase/química , Timidilato Sintase/química , Antimetabólitos Antineoplásicos/farmacologia , Sítios de Ligação , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular , Cristalografia por Raios X , DNA/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fluoruracila/farmacologia , Células HCT116 , Humanos , Cinética , Metotrexato/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Complexos Multienzimáticos/antagonistas & inibidores , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Especificidade por Substrato , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Termodinâmica , Timidilato Sintase/antagonistas & inibidores , Timidilato Sintase/genética , Timidilato Sintase/metabolismo
19.
J Mol Graph Model ; 77: 33-50, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28826032

RESUMO

Three crystal structures are presented of nematode thymidylate synthases (TS), including Caenorhabditis elegans (Ce) enzyme without ligands and its ternary complex with dUMP and Raltitrexed, and binary complex of Trichinella spiralis (Ts) enzyme with dUMP. In search of differences potentially relevant for the development of species-specific inhibitors of the nematode enzyme, a comparison was made of the present Ce and Ts enzyme structures, as well as binary complex of Ce enzyme with dUMP, with the corresponding mammalian (human, mouse and rat) enzyme crystal structures. To complement the comparison, tCONCOORD computations were performed to evaluate dynamic behaviors of mammalian and nematode TS structures. Finally, comparative molecular docking combined with molecular dynamics and free energy of binding calculations were carried out to search for ligands showing selective affinity to T. spiralis TS. Despite an overall strong similarity in structure and dynamics of nematode vs mammalian TSs, a pool of ligands demonstrating predictively a strong and selective binding to TsTS has been delimited. These compounds, the E63 family, locate in the dimerization interface of TsTS where they exert species-specific interactions with certain non-conserved residues, including hydrogen bonds with Thr174 and hydrophobic contacts with Phe192, Cys191 and Tyr152. The E63 family of ligands opens the possibility of future development of selective inhibitors of TsTS and effective agents against trichinellosis.


Assuntos
Caenorhabditis elegans/enzimologia , Inibidores Enzimáticos/química , Timidilato Sintase/química , Trichinella spiralis/enzimologia , Animais , Sítios de Ligação , Caenorhabditis elegans/química , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Humanos , Ligação de Hidrogênio , Ligantes , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Ratos , Especificidade da Espécie , Timidilato Sintase/antagonistas & inibidores , Trichinella spiralis/química
20.
Acta Biochim Pol ; 53(1): 11-32, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16410835

RESUMO

Several enzymes that were originally characterized to have one defined function in intermediatory metabolism are now shown to participate in a number of other cellular processes. Multifunctional proteins may be crucial for building of the highly complex networks that maintain the function and structure in the eukaryotic cell possessing a relatively low number of protein-encoding genes. One facet of this phenomenon, on which I will focus in this review, is the interaction of metabolic enzymes with RNA. The list of such enzymes known to be associated with RNA is constantly expanding, but the most intriguing question remains unanswered: are the metabolic enzyme-RNA interactions relevant in the regulation of cell metabolism? It has been proposed that metabolic RNA-binding enzymes participate in general regulatory circuits linking a metabolic function to a regulatory mechanism, similar to the situation of the metabolic enzyme aconitase, which also functions as iron-responsive RNA-binding regulatory element. However, some authors have cautioned that some of such enzymes may merely represent "molecular fossils" of the transition from an RNA to a protein world and that the RNA-binding properties may not have a functional significance. Here I will describe enzymes that have been shown to interact with RNA (in several cases a newly discovered RNA-binding protein has been identified as a well-known metabolic enzyme) and particularly point out those whose ability to interact with RNA seems to have a proven physiological significance. I will also try to depict the molecular switch between an enzyme's metabolic and regulatory functions in cases where such a mechanism has been elucidated. For most of these enzymes relations between their enzymatic functions and RNA metabolism are unclear or seem not to exist. All these enzymes are ancient, as judged by their wide distribution, and participate in fundamental biochemical pathways.


Assuntos
Enzimas/fisiologia , Proteínas de Ligação a RNA/química , Animais , Bioquímica/métodos , Ciclo do Ácido Cítrico , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica , Glicólise , Humanos , Modelos Biológicos , Pentoses , Biossíntese de Proteínas , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA