Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
1.
Environ Res ; 257: 119394, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38866313

RESUMO

Cyanobacterial blooms, a natural phenomenon in freshwater ecosystems, have increased in frequency and severity due to climate change and eutrophication. Some cyanobacteria are able to produce harmful substances called cyanotoxins. These metabolites possess different chemical structures and action mechanisms representing a serious concern for human health and the environment. The most studied cyanotoxins belong to the group of microcystins which are potent hepatotoxins. Anabaenopeptins are another class of cyclic peptides produced by certain species of cyanobacteria, including Planktothrix spp. Despite limited knowledge regarding individual effects of anabaenopeptins on freshwater organisms, reports have identified in vivo toxicity in representatives of freshwater zooplankton by cyanobacterial extracts or mixtures containing anabaenopeptins. This study focused on the isolation and toxicity evaluation of the cyanotoxins produced in the 2022 Planktothrix rubescens bloom in Averno lake, Italy. The three main cyclic peptides have been isolated and identified by nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS) and optical analyses as anabaenopeptins A and B, and oscillamide Y. Ecotoxicological tests on the aquatic model organisms Daphnia magna (crustacean), Raphidocelis subcapitata (algae), and Aliivibrio fischeri (bacterium) revealed that anabaenopeptins A and B do not generate significant toxicity at environmentally relevant concentrations, being also found a stimulatory effect on R. subcapitata in the case of anabaenopeptin A. By contrast, oscillamide Y displayed toxicity. Ecological implications based on ECOSAR predictions align with experimental data. Moreover, long-term exposure bioassays on different green unicellular algae species showed that R. subcapitata was not significantly affected, while Scenedesmus obliquus and Chlorella vulgaris exhibited altered growth patterns. These results, together with the already-known background in literature, highlight the complexity of interactions between organisms and the tested compounds, which may be influenced by species-specific sensitivities, physiological differences, and modes of action, possibly affected by parameters like lipophilicity.


Assuntos
Daphnia , Peptídeos Cíclicos , Planktothrix , Peptídeos Cíclicos/toxicidade , Peptídeos Cíclicos/química , Animais , Daphnia/efeitos dos fármacos , Planktothrix/efeitos dos fármacos , Planktothrix/metabolismo , Aliivibrio fischeri/efeitos dos fármacos , Itália , Ecotoxicologia , Organismos Aquáticos/efeitos dos fármacos , Eutrofização
2.
Int J Mol Sci ; 25(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38891769

RESUMO

Staphylea, also called bladdernuts, is a genus of plants belonging to the family Staphyleaceae, widespread in tropical or temperate climates of America, Europe, and the Far East. Staphylea spp. produce bioactive metabolites with antioxidant properties, including polyphenols which have not been completely investigated for their phytotherapeutic potential, even though they have a long history of use for food. Here, we report the isolation of six flavonol glycosides from the hydroalcoholic extract of aerial parts of Staphylea pinnata L., collected in Italy, using a solid-phase extraction technique. They were identified using spectroscopic, spectrometric, and optical methods as three quercetin and three isorhamnetin glycosides. Among the flavonol glycosides isolated, isoquercetin and quercetin malonyl glucoside showed powerful antioxidant, antimicrobial, and wound healing promoting activity and thus are valuable as antiaging ingredients for cosmeceutical applications and for therapeutic applications in skin wound repair.


Assuntos
Antioxidantes , Flavonóis , Glicosídeos , Extratos Vegetais , Glicosídeos/farmacologia , Glicosídeos/química , Glicosídeos/isolamento & purificação , Flavonóis/farmacologia , Flavonóis/química , Flavonóis/isolamento & purificação , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Cicatrização/efeitos dos fármacos , Quercetina/farmacologia , Quercetina/química , Quercetina/análogos & derivados , Quercetina/isolamento & purificação , Humanos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Animais
3.
Int J Mol Sci ; 24(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37686148

RESUMO

Phytoestrogens are plant-derived bioactive compounds with estrogen-like properties. Their potential health benefits, especially in cancer prevention and treatment, have been a subject of considerable research in the past decade. Phytoestrogens exert their effects, at least in part, through interactions with estrogen receptors (ERs), mimicking or inhibiting the actions of natural estrogens. Recently, there has been growing interest in exploring the impact of phytoestrogens on osteosarcoma (OS), a type of bone malignancy that primarily affects children and young adults and is currently presenting limited treatment options. Considering the critical role of the estrogen/ERs axis in bone development and growth, the modulation of ERs has emerged as a highly promising approach in the treatment of OS. This review provides an extensive overview of current literature on the effects of phytoestrogens on human OS models. It delves into the multiple mechanisms through which these molecules regulate the cell cycle, apoptosis, and key pathways implicated in the growth and progression of OS, including ER signaling. Moreover, potential interactions between phytoestrogens and conventional chemotherapy agents commonly used in OS treatment will be examined. Understanding the impact of these compounds in OS holds great promise for developing novel therapeutic approaches that can augment current OS treatment modalities.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Criança , Adulto Jovem , Humanos , Fitoestrógenos/farmacologia , Fitoestrógenos/uso terapêutico , Osteossarcoma/tratamento farmacológico , Apoptose , Estrogênios , Neoplasias Ósseas/tratamento farmacológico
4.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36834695

RESUMO

Plants are considered a wealthy resource of novel natural drugs effective in the treatment of multidrug-resistant infections. Here, a bioguided purification of Ephedra foeminea extracts was performed to identify bioactive compounds. The determination of antimicrobial properties was achieved by broth microdilution assays to evaluate minimal inhibitory concentration (MIC) values and by crystal violet staining and confocal laser scanning microscopy analyses (CLSM) to investigate the antibiofilm capacity of the isolated compounds. Assays were performed on a panel of three gram-positive and three gram-negative bacterial strains. Six compounds were isolated from E. foeminea extracts for the first time. They were identified by nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) analyses as the well-known monoterpenoid phenols carvacrol and thymol and as four acylated kaempferol glycosides. Among them, the compound kaempferol-3-O-α-L-(2″,4″-di-E-p-coumaroyl)-rhamnopyranoside was found to be endowed with strong antibacterial properties and significant antibiofilm activity against S. aureus bacterial strains. Moreover, molecular docking studies on this compound suggested that the antibacterial activity of the tested ligand against S. aureus strains might be correlated to the inhibition of Sortase A and/or of tyrosyl tRNA synthase. Collectively, the results achieved open interesting perspectives to kaempferol-3-O-α-L-(2″,4″-di-E-p-coumaroyl)-rhamnopyranoside applicability in different fields, such as biomedical applications and biotechnological purposes such as food preservation and active packaging.


Assuntos
Anti-Infecciosos , Quempferóis , Quempferóis/farmacologia , Staphylococcus aureus , Simulação de Acoplamento Molecular , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Biofilmes , Extratos Vegetais/farmacologia , Resistência a Múltiplos Medicamentos , Testes de Sensibilidade Microbiana
5.
Molecules ; 28(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37687130

RESUMO

Diplodia corticola is one of the most aggressive fungal pathogens of Quercus species involved in the decline of Mediterranean oak forests. In this study, three strains of D. corticola associated with holm (Quercus ilex) and cork (Quercus suber) oak trees exhibiting dieback symptoms and cankers in Algeria were selected to investigate the production of secondary metabolites. Metabolomic analyses revealed the production of several known compounds, such as sphaeropsidins, diplopyrones and diplofuranones. Moreover, the comparative investigation of secondary metabolites produced by the analyzed strains with different degrees of virulence revealed possible implications of these compounds in the fungal virulence. In particular, sphaeropsidins seem to be the main phytotoxic compounds of D. corticola involved in the infections of Quercus species, with a possible synergistic influence of the less representative compounds in the fungal virulence.


Assuntos
Ascomicetos , Quercus , Virulência , Argélia
6.
Molecules ; 27(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36364247

RESUMO

The study of allelopathic activity of plants and the isolation and characterization of the responsible allelochemicals can lead to the development of environment friendly alternative approaches to weed control. Conyza species are invasive weeds that use allelopathic activity as part of a successful strategy to outcompete neighboring plants. Broomrape weeds are parasitic plants that use host-induced germination and the formation of a haustorium as strategies to infect host plants. The control of broomrape infection in most affected crops is limited or non-existing. In the current study, we investigated the allelopathic activity of Conyza bonariensis organic extracts in suicidal germination and radicle growth of four broomrape species (Orobanche crenata, Orobanche cumana, Orobanche minor and Phelipanche ramosa). A bioactivity-driven fractionation of Conyza bonariensis extracts led to the identification of two germination-inducing molecules and two growth-inhibitory compounds. The germination-inducing metabolites had species-specific activity being hispidulin active on seeds of O. cumana and methyl 4-hydroxybenzoate active in P. ramosa. The growth-inhibitory metabolites (4Z)-lachnophyllum lactone and (4Z,8Z)-matricaria lactone strongly inhibited the radicle growth of all parasitic weed species studied. Some structure-activity relationships were found as result of the study herein presented.


Assuntos
Conyza , Orobanche , Humanos , Plantas Daninhas , Feromônios/farmacologia , Germinação , Sementes , Lactonas/farmacologia
7.
Chirality ; 33(5): 233-241, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33598968

RESUMO

Sesquitepenoids inuloxins A-D, belonging to different subgroups, were isolated from Dittrichia viscosa and showed potential biocontrol of some parasitic plants as Pelipanche, Orobanche, and Cuscuta species. The absolute configurations of the first three inuloxins A-C were previously determined by using experimental and computational chiroptical spectroscopic methods. The absolute configuration of inuloxin D remains to be established. The bioactive inuloxin E, closely related to inuloxin D, was recently isolated from the same plant organic extract. The same relative configuration of inuloxin D was assigned to inuloxin E by comparison of their NMR spectroscopic data. The absolute configurations of inuloxin D and inuloxin E are suggested in this work by analysis of the experimental and predicted chiroptical properties of the 4-O-acetyl derivative of inuloxin D.


Assuntos
Sesquiterpenos/química , Asteraceae/química , Dicroísmo Circular , Extratos Vegetais/química , Estereoisomerismo
8.
Int J Mol Sci ; 22(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33805133

RESUMO

In recent decades, intensive crop management has involved excessive use of pesticides or fertilizers, compromising environmental integrity and public health. Accordingly, there has been worldwide pressure to find an eco-friendly and safe strategy to ensure agricultural productivity. Among alternative approaches, Plant Growth-Promoting (PGP) rhizobacteria are receiving increasing attention as suitable biocontrol agents against agricultural pests. In the present study, 22 spore-forming bacteria were selected among a salt-pan rhizobacteria collection for their PGP traits and their antagonistic activity against the plant pathogen fungus Macrophomina phaseolina. Based on the higher antifungal activity, strain RHFS10, identified as Bacillus vallismortis, was further examined and cell-free supernatant assays, column purification, and tandem mass spectrometry were employed to purify and preliminarily identify the antifungal metabolites. Interestingly, the minimum inhibitory concentration assessed for the fractions active against M. phaseolina was 10 times lower and more stable than the one estimated for the commercial fungicide pentachloronitrobenzene. These results suggest the use of B. vallismortis strain RHFS10 as a potential plant growth-promoting rhizobacteria as an alternative to chemical pesticides to efficiently control the phytopathogenic fungus M. phaseolina.


Assuntos
Ascomicetos/patogenicidade , Bacillus/fisiologia , Agentes de Controle Biológico , Doenças das Plantas/microbiologia , Rizosfera , Antibiose , Antifúngicos/farmacologia , Bacillus/classificação , Biofilmes , Hidrólise , Peso Molecular , Filogenia , Desenvolvimento Vegetal , RNA Ribossômico 16S/genética , Sequenciamento Completo do Genoma
9.
J Nat Prod ; 83(4): 1131-1138, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32191467

RESUMO

Two new diterpenoids with tetrasubstituted 3-oxodihydrofuran substituents, named higginsianins D (1) and E (2), were isolated from the mycelium of the fungus Colletotrichum higginsianum grown in liquid culture. They were characterized as methyl 2-[6-hydroxy-5,8a-dimethyl-2-methylene-5-(4-methylpent-3-enyl)-decahydronaphthalen-1-ylmethyl]-4,5-dimethyl-3-oxo-2,3-dihydrofuran-2-carboxylate and its 21-epimer by using NMR, HRESIMS, and chemical methods. The relative configurations of higginsianins D and E, which did not afford crystals suitable for X-ray analysis, were determined by NOESY experiments and by comparison with NMR data of higginsianin B. The absolute configuration was established by comparison of experimental and calculated electronic circular dichroism data. The evaluation of 1 and 2 for antiproliferative activity against human A431 cells derived from epidermoid carcinoma and H1299 non-small-cell lung carcinoma cells revealed that 2 exhibited higher cytotoxic activity than 1, with an IC50 value of 1.0 µM against A431 cells. Remarkably, both 1 and 2 were almost ineffective against immortalized keratinocytes, used as a preneoplastic cell line model.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/fisiopatologia , Diterpenos/química , Neoplasias Pulmonares/fisiopatologia , Antineoplásicos/química , Linhagem Celular , Dicroísmo Circular , Colletotrichum , Diterpenos/isolamento & purificação , Diterpenos/farmacologia , Humanos , Espectroscopia de Ressonância Magnética , Estrutura Molecular
10.
Molecules ; 25(23)2020 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-33260413

RESUMO

Amaryllidaceae are bulbous wild and cultivated plants well known for their beautiful flowers and pharmaceutical applications, essentially due to the alkaloids and flavonoids content. Hundreds of alkaloids have been isolated until now and several scientific publications reported their sources, chemical structures, and biological activities. During the last decade, some unstudied Amaryllidaceae plants were the object of in-depth investigations to isolate and chemically and biologically characterize new and already known alkaloids as well as some analogues. This review describes the isolation and chemical and biological characterization of the Amaryllidaceae alkaloids, and their analogues obtained in the last decade, focusing the discussion on the new ones.


Assuntos
Alcaloides de Amaryllidaceae/química , Alcaloides de Amaryllidaceae/farmacologia , Amaryllidaceae/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Alcaloides de Amaryllidaceae/isolamento & purificação , Medicina Tradicional , Fitoterapia , Extratos Vegetais/isolamento & purificação , Raízes de Plantas/química , Relação Estrutura-Atividade
11.
J Exp Bot ; 70(19): 5487-5494, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31257433

RESUMO

Pyrenophoric acid (P-Acid), P-Acid B, and P-Acid C are three phytotoxic sesquiterpenoids produced by the ascomycete seed pathogen Pyrenophora semeniperda, a fungus proposed as a mycoherbicide for biocontrol of cheatgrass, an extremely invasive weed. When tested in cheatgrass bioassays, these metabolites were able to delay seed germination, with P-Acid B being the most active compound. Here, we have investigated the cross-kingdom activity of P-Acid B and its mode of action, and found that it activates the abscisic acid (ABA) signaling pathway in order to inhibit seedling establishment. P-Acid B inhibits seedling establishment in wild-type Arabidopsis thaliana, while several mutants affected in the early perception as well as in downstream ABA signaling components were insensitive to the fungal compound. However, in spite of structural similarities between ABA and P-Acid B, the latter is not able to activate the PYR/PYL family of ABA receptors. Instead, we have found that P-Acid B uses the ABA biosynthesis pathway at the level of alcohol dehydrogenase ABA2 to reduce seedling establishment. We propose that the fungus P. semeniperda manipulates plant ABA biosynthesis as a strategy to reduce seed germination, increasing its ability to cause seed mortality and thereby increase its fitness through higher reproductive success.


Assuntos
Ácido Abscísico/metabolismo , Arabidopsis/crescimento & desenvolvimento , Ascomicetos/fisiologia , Vias Biossintéticas , Germinação , Sesquiterpenos/metabolismo , Arabidopsis/microbiologia
12.
Org Biomol Chem ; 17(9): 2508-2515, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30758008

RESUMO

Inuloxin A is a promising plant phytotoxic sesquiterpene that deserves further studies to evaluate its potential as a bioherbicide. However, its low solubility in water and its bioavailability could hamper its practical applications. For this reason, inuloxin A was complexed with ß-cyclodextrins by using three different methods, i.e., kneading, co-precipitation and grinding. The resulted complexes were fully characterized by different techniques such as 1H NMR, UV-vis, XRD, DSC and SEM, and they were biologically assayed in comparison with the pure compound in several biological systems. The efficacy of the kneading and grinding complexes was similar to that of inuloxin A and these complexes almost completely inhibit Phelipanche ramosa seed germination. The complete solubility in water and the preservation of the biological properties of these two complexes could allow further studies to develop a novel natural herbicide for parasitic plant management based on these formulations.


Assuntos
Portadores de Fármacos/química , Herbicidas/toxicidade , Orobanche/efeitos dos fármacos , Plantas Daninhas/efeitos dos fármacos , Sesquiterpenos de Germacrano/toxicidade , Sesquiterpenos/toxicidade , beta-Ciclodextrinas/química , Germinação/efeitos dos fármacos , Herbicidas/administração & dosagem , Herbicidas/química , Orobanche/crescimento & desenvolvimento , Plantas Daninhas/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sesquiterpenos/administração & dosagem , Sesquiterpenos/química , Sesquiterpenos de Germacrano/administração & dosagem , Sesquiterpenos de Germacrano/química , Solubilidade
13.
Molecules ; 24(19)2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31557920

RESUMO

A new sesquiterpenoid belonging to the subgroup seco-eudesmanolides and named inuloxin E was isolated from Dittrichia viscosa, together with the already known sesquiterpenoids inuloxins A-D and α-costic acid. Inuloxin E was characterized by spectroscopic data (essentially NMR and ESI MS) as 3-methylene-6-(1-methyl-4-oxo-pentyl)-3a,4,7,7a-tetrahydro-3H-benzofuran-2-one. Its relative configuration was determined by comparison with the closely related inuloxin D and chemical conversion of inuloxin E into inuloxin D and by the observed significant correlation in the NOESY spectrum. Both inuloxins D and E induced germination of the parasitic weed Orobanche cumana, but were inactive on the seeds of Orobanche minor and Phelipanche ramosa. The germination activity of some hemisynthetic esters of inuloxin D was also investigated.


Assuntos
Asteraceae/química , Orobanche/efeitos dos fármacos , Orobanche/crescimento & desenvolvimento , Extratos Vegetais/farmacologia , Sesquiterpenos/farmacologia , Germinação/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Extratos Vegetais/química , Sementes/efeitos dos fármacos , Sesquiterpenos/química
14.
Molecules ; 24(15)2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31370299

RESUMO

Radicinin (1), is a fungal dihydropyranopyran-4,5-dione isolated together with some analogues, namely 3-epi-radicinin, radicinol, 3-epi-radicinol, and cochliotoxin (2-5), from the culture filtrates of the fungus Cochliobolus australiensis, a foliar pathogen of buffelgrass (Cenchrus ciliaris), an invasive weed in North America. Among the different metabolites 1 showed target-specific activity against the host plant and no toxicity on zebrafish embryos, promoting its potential use to develop a natural bioherbicide formulation to manage buffelgrass. These data and the peculiar structural feature of 1 suggested to carry out a structure-activity relationship study, preparing some key hemisynthetic derivatives and to test their phytotoxicity. In particular, p-bromobenzoyl, 5-azidopentanoyl, stearoyl, mesyl and acetyl esters of radicinin were semisynthesized as well as the monoacetyl ester of 3-epi-radicinin, the diacetyl esters of radicinol and its 3 epimer, and two hexa-hydro derivatives of radicinin. The spectroscopic characterization and the activity by leaf puncture bioassay against buffelgrass of all the derivatives is reported. Most of the compounds showed phytotoxicity but none of them had comparable or higher activity than radicinin. Thus, the presence of an α,ß unsaturated carbonyl group at C-4, as well as, the presence of a free secondary hydroxyl group at C-3 and the stereochemistry of the same carbon proved to be the essential feature for activity.


Assuntos
Cenchrus/efeitos dos fármacos , Plantas Daninhas/efeitos dos fármacos , Pironas/química , Relação Estrutura-Atividade , Alcaloides/química , Alcaloides/farmacologia , Ascomicetos/química , Cenchrus/crescimento & desenvolvimento , Fungos Mitospóricos/química , Estrutura Molecular , América do Norte , Plantas Daninhas/crescimento & desenvolvimento , Pironas/farmacologia , Toxinas Biológicas/química , Toxinas Biológicas/farmacologia
15.
Molecules ; 24(6)2019 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-30893868

RESUMO

The fungal pathogens Cochliobolus australiensis and Pyricularia grisea have recently been isolated from diseased leaves of buffelgrass (Cenchrus ciliaris) in its North American range, and their ability to produce phytotoxic metabolites that could potentially be used as natural herbicides against this invasive weed was investigated. Fourteen secondary metabolites obtained from in vitro cultures of these two pathogens were tested by leaf puncture assay on the host plant at different concentrations. Radicinin and (10S, 11S)-epi-pyriculol proved to be the most promising compounds. Thus, their phytotoxic activity was also evaluated on non-host indigenous plants. Radicinin demonstrated high target-specific toxicity on buffelgrass, low toxicity to native plants, and no teratogenic, sub-lethal, or lethal effects on zebrafish (Brachydanio rerio) embryos. It is now under consideration for the development of a target-specific bioherbicide to be used against buffelgrass in natural systems where synthetic herbicides cause excessive damage to native plants.


Assuntos
Cenchrus/efeitos dos fármacos , Herbicidas/imunologia , Herbicidas/farmacologia , Pironas/farmacologia , Animais , Benzaldeídos/farmacologia , Embrião não Mamífero/efeitos dos fármacos , Álcoois Graxos/farmacologia , Peixe-Zebra
16.
Molecules ; 24(13)2019 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-31261896

RESUMO

Ceratitis capitata, the Mediterranean fruit fly, is one of the most serious agricultural pests worldwide responsible for significant reduction in fruit and vegetable yields. Eradication is expensive and often not feasible. Current control methods include the application of conventional insecticides, leading to pesticide resistance and unwanted environmental effects. The aim of this study was to identify potential new attractants for incorporation into more environmentally sound management programs for C. capitata. In initial binary choice bioassays against control, a series of naturally occurring plant and fungal aromatic compounds and their related analogs were screened, identifying phenyllactic acid (7), estragole (24), o-eugenol (21), and 2-allylphenol (23) as promising attractants for male C. capitata. Subsequent binary choice tests evaluated five semisynthetic derivatives prepared from 2-allylphenol, but none of these were as attractive as 2-allylphenol. In binary choice bioassays with the four most attractive compounds, males were more attracted to o-eugenol (21) than to estragole (24), 2-allylphenol (23), or phenyllactic acid (7). In addition, electroantennography (EAG) was used to quantify antennal olfactory responses to the individual compounds (1-29), and the strongest EAG responses were elicited by 1-allyl-4-(trifluoromethyl)benzene (11), estragole (24), 4-allyltoluene (14), trans-anethole (9), o-eugenol (21), and 2-allylphenol (23). The compounds evaluated in the current investigation provide insight into chemical structure-function relationships and help direct future efforts in the development of improved attractants for the detection and control of invasive C. capitata.


Assuntos
Alcaloides/farmacologia , Ceratitis capitata/fisiologia , Controle de Insetos/métodos , Derivados de Alilbenzenos , Animais , Anisóis/farmacologia , Antenas de Artrópodes/efeitos dos fármacos , Antenas de Artrópodes/fisiologia , Ceratitis capitata/efeitos dos fármacos , Eugenol/farmacologia , Lactatos/farmacologia , Masculino , Fenóis/farmacologia
17.
J Exp Bot ; 69(12): 3095-3102, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29590430

RESUMO

Jasmonates are signaling compounds that regulate plant responses to stress. Jasmonic acid (JA) is the direct precursor of the bioactive plant hormone JA-isoleucine (JA-Ile), the ligand of the CORONATINE INSENSITIVE 1-jasmonate ZIM-domain (COI1-JAZ) co-receptor complex. JA, its methyl ester, and three furanonyl esters were recently isolated from the grapevine pathogen Lasiodiplodia mediterranea. The JA ester lasiojasmonate A (LasA) is the first reported naturally occurring JA-furanone, and its mode of action has not yet been elucidated. Here, we show that LasA activates many JA-regulated responses in planta, including protein degradation, gene expression, and physiological processes. These in vivo effects require LasA conversion into JA, formation of JA-Ile, and its recognition by the plant JA-Ile perception complex. These findings suggest a mode of action of the natural fungal LasA as an inactive JA pool that can be transformed into the bioactive JA-Ile form. We propose that fungal production of JA derivates such as LasA occurs at late infection stages to induce plant JA responses such as cell death, and can facilitate fungal infection.


Assuntos
Arabidopsis/fisiologia , Ascomicetos/fisiologia , Ciclopentanos/metabolismo , Micotoxinas/metabolismo , Oxilipinas/metabolismo , Transdução de Sinais , Arabidopsis/microbiologia , Isoleucina/metabolismo
18.
J Nat Prod ; 81(4): 1093-1097, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29489357

RESUMO

Ascochyta lentis var. lathyri has recently been reported to be the causal agent of Ascochyta blight of grass pea ( Lathyrus sativus), a disease characterized by the appearance of necrotic lesions of leaves and stems. Considering the novelty of the pathogen and the possible involvement of secondary metabolites in symptom appearance, a study was carried out to ascertain the capability of this fungus to produce bioactive metabolites. Some phytotoxic phenols were isolated from the culture filtrates of the fungus. In particular, two new phytotoxic metabolites, named lathyroxins A and B, were characterized by spectroscopic methods as 4-(2-hydroxy-3,3-dimethoxypropyl)phenol and 3-(4-hydroxyphenyl)propane-1,2-diol, respectively, and the R absolute configuration of C-2 of their 2-dimethoxy- and 2,3-diol-propyl side chain was assigned. Moreover, other well-known fungal metabolites, namely, p-hydroxybenzaldehyde, p-methoxyphenol, and tyrosol, were also identified. Lathyroxins A and B showed interesting phytotoxic properties, being able to cause necrosis on leaves and to inhibit seed germination and rootlet elongation. Moreover, both of the new metabolites had no effect against bacteria, arthropods, and nematodes.


Assuntos
Ascomicetos/química , Lathyrus/microbiologia , Fenóis/química , Pisum sativum/microbiologia , Toxinas Biológicas/química , Benzaldeídos , Germinação/efeitos dos fármacos , Micotoxinas/química , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Raízes de Plantas/microbiologia
19.
J Nat Prod ; 81(12): 2700-2709, 2018 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-30457871

RESUMO

A strain of the pathogenic fungus Ascochyta lentis isolated from lentil ( Lens culinaris) was studied to ascertain its capability to produce bioactive metabolites. From the culture filtrates were found three new anthraquinone derivatives, named lentiquinones A (1), B (2), and C (3), and the known lentisone. From the mycelium, four known analogues were identified, namely pachybasin (in larger amount), ω-hydroxypachybasin, 1,7-dihydroxy-3-methylanthracene-9,10-dione, and phomarin. Lentiquinones A-C were characterized by spectroscopic methods as 3,4,6-trihydroxy-8-methyl-2 H-benzo[ g]chromene-5,10-dione, 2,3,4,5,10-pentahydroxy-7-methyl-3,4,4a,10-tetrahydroanthracen-9(2 H)-one, and its 2-epimer, respectively, and the relative configuration of the two latter compounds was deduced by X-ray diffraction data analysis. The absolute configuration of lentiquinones B and C was determined as (2 R,3 S,4 S,4a S,10 R) and (2 S,3 S,4 S,4a S,10 R), respectively, by electronic circular dichroism (ECD) in solution and solid state, and TDDFT calculations. When tested by using different bioassays, the novel compounds showed interesting activities. In particular, applied to punctured leaves of host and nonhost plants, the three new compounds and lentisone caused severe necrosis, with lentiquinone A being the most active among the new metabolites. On cress ( Lepidium sativum), this latter compound proved to be particularly active in inhibiting root elongation. On Lemna minor all the compounds reduced the content of chlorophyll, with 1,7-dihyroxy-3-methylanthracene-9,10-dione being the most active. The new compounds, together with lentisone, proved to have antibiotic properties.


Assuntos
Antraquinonas/isolamento & purificação , Ascomicetos/química , Lens (Planta)/microbiologia , Micotoxinas/isolamento & purificação , Antraquinonas/química , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Antifúngicos/química , Antifúngicos/isolamento & purificação , Antifúngicos/farmacologia , Germinação/efeitos dos fármacos , Estrutura Molecular , Micotoxinas/farmacologia , Plantas/efeitos dos fármacos
20.
Chirality ; 30(10): 1115-1134, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30153350

RESUMO

Plants and fungi are seemingly inexhaustible sources of interesting natural products with remarkable structural and biological diversity. One of the most important groups is the terpenes, ubiquitous natural products that are generated by 2 now well-established biosynthetic pathways: the older mevalonate and the more recently discovered 1-deoxyxylulose-5-phosphate. Among the diterpenes, the pimarane diterpenes are a very representative subgroup with several and interesting biological activities resulting from different functional group modifications. In this review, we outline the method of their structure determination, mainly spectroscopic results, their absolute configuration, and structure-activity relationships, were reported, as well as the mode of action for selected examples from plants, marine organisms, and fungi. The pimarane, isopimarane, and ent-pimarane diterpenes covered in this review have a wide range of biological activities including antimicrobial, antifungal, antiviral, phytotoxic, phytoalexin, cytotoxicity, and antispasmodic and relaxant effects.


Assuntos
Abietanos/química , Abietanos/farmacologia , Produtos Biológicos/química , Organismos Aquáticos/química , Plantas/química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA