Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
PLoS Pathog ; 19(5): e1011387, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37200402

RESUMO

Infections caused by members of the mycobacterium tuberculosis complex [MTC] and nontuberculous mycobacteria [NTM] can induce widespread morbidity and mortality in people. Mycobacterial infections cause both a delayed immune response, which limits rate of bacterial clearance, and formation of granulomas, which contain bacterial spread, but also contribute to lung damage, fibrosis, and morbidity. Granulomas also limit access of antibiotics to bacteria, which may facilitate development of resistance. Bacteria resistant to some or all antibiotics cause significant morbidity and mortality, and newly developed antibiotics readily engender resistance, highlighting the need for new therapeutic approaches. Imatinib mesylate, a cancer drug used to treat chronic myelogenous leukemia [CML] that targets Abl and related tyrosine kinases, is a possible host-directed therapeutic [HDT] for mycobacterial infections, including those causing TB. Here, we use the murine Mycobacterium marinum [Mm] infection model, which induces granulomatous tail lesions. Based on histological measurements, imatinib reduces both lesion size and inflammation of surrounding tissue. Transcriptomic analysis of tail lesions indicates that imatinib induces gene signatures indicative of immune activation and regulation at early time points post infection that resemble those seen at later ones, suggesting that imatinib accelerates but does not substantially alter anti-mycobacterial immune responses. Imatinib likewise induces signatures associated with cell death and promotes survival of bone marrow-derived macrophages [BMDMs] in culture following infection with Mm. Notably, the capacity of imatinib to limit formation and growth of granulomas in vivo and to promote survival of BMDMs in vitro depends upon caspase 8, a key regulator of cell survival and death. These data provide evidence for the utility of imatinib as an HDT for mycobacterial infections in accelerating and regulating immune responses, and limiting pathology associated with granulomas, which may mitigate post-treatment morbidity.


Assuntos
Piperazinas , Pirimidinas , Humanos , Animais , Camundongos , Mesilato de Imatinib/farmacologia , Pirimidinas/farmacologia , Piperazinas/farmacologia , Benzamidas , Antibacterianos/uso terapêutico , Granuloma/tratamento farmacológico
2.
Hepatology ; 74(5): 2745-2758, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34118081

RESUMO

BACKGROUND AND AIMS: Interferon-γ (IFNγ) is a central activator of immune responses in the liver and other organs. IFNγ triggers tissue injury and inflammation in immune diseases, which occur predominantly in females for unknown reasons. Recent findings that autophagy regulates hepatotoxicity from proinflammatory cytokines led to an examination of whether defective hepatocyte autophagy underlies sex-specific liver injury and inflammation induced by IFNγ. APPROACH AND RESULTS: A lentiviral autophagy-related 5 (Atg5) knockdown was performed to decrease autophagy-sensitized alpha mouse liver (AML 12) hepatocytes to death from IFNγ in combination with IL-1ß or TNF. Death was necrosis attributable to impaired energy homeostasis and adenosine triphosphate depletion. Male mice with decreased autophagy from a tamoxifen-inducible, hepatocyte-specific Atg5 knockout were resistant to IFNγ hepatotoxicity whereas female knockout mice developed liver injury and inflammation. Female mice had increased IFNγ-induced signal transducer and activator of transcription 1 (STAT1) levels compared to males. Blocking STAT1, but not interferon regulatory factor 1, signaling prevented IFNγ-induced hepatocyte death in autophagy-deficient AML12 cells and female mice. The mechanism of death is STAT1-induced overexpression of nitric oxide synthase 2 (NOS2) as in vitro hepatocyte death and in vivo liver injury were blocked by NOS2 inhibition. CONCLUSIONS: Decreased hepatocyte autophagy sensitizes mice to IFNγ-induced liver injury and inflammation through overactivation of STAT1 signaling that causes NOS2 overexpression. Hepatotoxicity is restricted to female mice, suggesting that sex-specific effects of defective autophagy may underlie the increased susceptibility of females to IFNγ-mediated immune diseases.


Assuntos
Autofagia/imunologia , Hepatite/imunologia , Interferon gama/metabolismo , Fígado/patologia , Animais , Apoptose/imunologia , Autofagia/genética , Proteína 5 Relacionada à Autofagia/genética , Modelos Animais de Doenças , Suscetibilidade a Doenças/imunologia , Feminino , Técnicas de Silenciamento de Genes , Hepatite/metabolismo , Hepatite/patologia , Hepatócitos , Humanos , Fígado/imunologia , Masculino , Camundongos , Camundongos Transgênicos , Óxido Nítrico Sintase Tipo II/metabolismo , Fator de Transcrição STAT1/metabolismo , Fatores Sexuais , Transdução de Sinais/imunologia
3.
Hepatology ; 72(2): 595-608, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32108953

RESUMO

BACKGROUND AND AIMS: The proinflammatory cytokine IL-1ß has been implicated in the pathophysiology of nonalcoholic and alcoholic steatohepatitis. How IL-1ß promotes liver injury in these diseases is unclear, as no IL-1ß receptor-linked death pathway has been identified. Autophagy functions in hepatocyte resistance to injury and death, and findings of decreased hepatic autophagy in many liver diseases suggest a role for impaired autophagy in disease pathogenesis. Recent findings that autophagy blocks mouse liver injury from lipopolysaccharide led to an examination of autophagy's function in hepatotoxicity from proinflammatory cytokines. APPROACH AND RESULTS: AML12 cells with decreased autophagy from a lentiviral autophagy-related 5 (Atg5) knockdown were resistant to toxicity from TNF, but sensitized to death from IL-1ß, which was markedly amplified by TNF co-treatment. IL-1ß/TNF death was necrosis by trypan blue and propidium iodide positivity, absence of mitochondrial death pathway and caspase activation, and failure of a caspase inhibitor or necrostatin-1s to prevent death. IL-1ß/TNF depleted autophagy-deficient cells of ATP, and ATP depletion and cell death were prevented by supplementation with the energy substrate pyruvate or oleate. Pharmacological inhibitors and genetic knockdown studies demonstrated that IL-1ß/TNF-induced necrosis resulted from lysosomal permeabilization and release of cathepsins B and L in autophagy-deficient cells. Mice with a tamoxifen-inducible, hepatocyte-specific Atg5 knockout were similarly sensitized to cathepsin-dependent hepatocellular injury and death from IL-1ß/TNF in combination, but neither IL-1ß nor TNF alone. Knockout mice had increased hepatic inflammation, and IL-1ß/TNF-treated, autophagy-deficient AML12 cells secreted exosomes with proinflammatory damage-associated molecular patterns. CONCLUSIONS: The findings delineate mechanisms by which decreased hepatocyte autophagy promotes IL-1ß/TNF-induced necrosis from impaired energy homeostasis and lysosomal permeabilization and inflammation through the secretion of exosomal damage-associated molecular patterns.


Assuntos
Autofagia , Hepatócitos/fisiologia , Interleucina-1beta/fisiologia , Hepatopatias/etiologia , Fator de Necrose Tumoral alfa/fisiologia , Animais , Células Cultivadas , Feminino , Inflamação/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
4.
Alcohol Clin Exp Res ; 43(7): 1403-1413, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30964198

RESUMO

BACKGROUND: One mechanism underlying the development of alcoholic liver disease is overactivation of the innate immune response. Recent investigations indicate that the lysosomal pathway of autophagy down-regulates the inflammatory state of hepatic macrophages, suggesting that macrophage autophagy may regulate innate immunity in alcoholic liver disease. The function of macrophage autophagy in the development of alcoholic liver disease was examined in studies employing mice with a myeloid-specific decrease in autophagy. METHODS: Littermate control and Atg5Δmye mice lacking Atg5-dependent myeloid autophagy were administered a Lieber-DeCarli control (CD) or ethanol diet (ED) alone or together with lipopolysaccharide (LPS) and examined for the degree of liver injury and inflammation. RESULTS: Knockout mice with decreased macrophage autophagy had equivalent steatosis but increased mortality and liver injury from ED alone. Increased liver injury and hepatocyte death also occurred in Atg5Δmye mice administered ED and LPS in association with systemic inflammation as indicated by elevated serum levels of proinflammatory cytokines. Hepatic macrophage and neutrophil infiltration were unaffected by decreased autophagy, but levels of proinflammatory cytokine gene induction were significantly increased in the livers but not adipose tissue of knockout mice treated with ED and LPS. Inflammasome activation was increased in ED/LPS-treated knockout mice resulting in elevated interleukin (IL)-1ß production. Increased IL-1ß promoted alcoholic liver disease as liver injury was decreased by the administration of an IL-1 receptor antagonist. CONCLUSIONS: Macrophage autophagy functions to prevent liver injury from alcohol. This protection is mediated in part by down-regulation of inflammasome-dependent and inflammasome-independent hepatic inflammation. Therapies to increase autophagy may be effective in this disease through anti-inflammatory effects on macrophages.


Assuntos
Autofagia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Hepatopatias Alcoólicas/patologia , Fígado/patologia , Macrófagos/patologia , Animais , Proteína 5 Relacionada à Autofagia/genética , Depressores do Sistema Nervoso Central/toxicidade , Citocinas/sangue , Dieta , Etanol/toxicidade , Feminino , Hepatócitos/patologia , Inflamassomos , Células de Kupffer/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos
5.
Hepatology ; 66(3): 922-935, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28470665

RESUMO

Toxin-induced liver diseases lack effective therapies despite increased understanding of the role factors such as an overactive innate immune response play in the pathogenesis of this form of hepatic injury. Pentamidine is an effective antimicrobial agent against several human pathogens, but studies have also suggested that this drug inhibits inflammation. This potential anti-inflammatory mechanism of action, together with the development of a new oral form of pentamidine isethionate VLX103, led to investigations of the effectiveness of this drug in the prevention and treatment of hepatotoxic liver injury. Pretreatment with a single injection of VLX103 in the d-galactosamine (GalN) and lipopolysaccharide (LPS) model of acute, fulminant liver injury dramatically decreased serum alanine aminotransferase levels, histological injury, the number of terminal deoxynucleotide transferase-mediated deoxyuridine triphosphate nick end-labeling (TUNEL)-positive cells and mortality compared with vehicle-injected controls. VLX103 decreased GalN/LPS induction of tumor necrosis factor (TNF) but had no effect on other proinflammatory cytokines. VLX103 prevented the proinflammatory activation of cultured hepatic macrophages and partially blocked liver injury from GalN/TNF. In GalN/LPS-treated mice, VLX103 decreased activation of both the mitochondrial death pathway and downstream effector caspases 3 and 7, which resulted from reduced c-Jun N-terminal kinase activation and initiator caspase 8 cleavage. Delaying VLX103 treatment for up to 3 hours after GalN/LPS administration was still remarkably effective in blocking liver injury in this model. Oral administration of VLX103 also decreased hepatotoxic injury in a second more chronic model of alcohol-induced liver injury, as demonstrated by decreased serum alanine and aspartate aminotransferase levels and numbers of TUNEL-positive cells. CONCLUSION: VLX103 effectively decreases toxin-induced liver injury in mice and may be an effective therapy for this and other forms of human liver disease. (Hepatology 2017;66:922-935).


Assuntos
Galactosamina/toxicidade , Lipopolissacarídeos/toxicidade , Falência Hepática Aguda/prevenção & controle , Pentamidina/farmacologia , Animais , Biópsia por Agulha , Western Blotting , Citocinas/metabolismo , Modelos Animais de Doenças , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/mortalidade , Testes de Função Hepática , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Reação em Cadeia da Polimerase em Tempo Real/métodos , Taxa de Sobrevida
6.
J Lipid Res ; 58(8): 1500-1513, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28572516

RESUMO

Sphingolipids (SLs) have been extensively investigated in biomedical research due to their role as bioactive molecules in cells. Here, we describe the effect of a SL analog, jaspine B (JB), a cyclic anhydrophytosphingosine found in marine sponges, on the gastric cancer cell line, HGC-27. JB induced alterations in the sphingolipidome, mainly the accumulation of dihydrosphingosine, sphingosine, and their phosphorylated forms due to inhibition of ceramide synthases. Moreover, JB provoked atypical cell death in HGC-27 cells, characterized by the formation of cytoplasmic vacuoles in a time and dose-dependent manner. Vacuoles appeared to originate from macropinocytosis and triggered cytoplasmic disruption. The pan-caspase inhibitor, z-VAD, did not alter either cytotoxicity or vacuole formation, suggesting that JB activates a caspase-independent cell death mechanism. The autophagy inhibitor, wortmannin, did not decrease JB-stimulated LC3-II accumulation. In addition, cell vacuolation induced by JB was characterized by single-membrane vacuoles, which are different from double-membrane autophagosomes. These findings suggest that JB-induced cell vacuolation is not related to autophagy and it is also independent of its action on SL metabolism.


Assuntos
Morte Celular/efeitos dos fármacos , Oxirredutases/antagonistas & inibidores , Esfingosina/análogos & derivados , Neoplasias Gástricas/patologia , Acilação/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Pinocitose/efeitos dos fármacos , Esfingosina/farmacologia , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo
7.
J Lipid Res ; 56(10): 2019-28, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26286360

RESUMO

Ceramidases catalyze the cleavage of ceramides into sphingosine and fatty acids. Previously, we reported on the use of the RBM14 fluorogenic ceramide analogs to determine acidic ceramidase activity. In this work, we investigated the activity of other amidohydrolases on RBM14 compounds. Both bacterial and human purified neutral ceramidases (NCs), as well as ectopically expressed mouse neutral ceramidase hydrolyzed RBM14 with different selectivity, depending on the N-acyl chain length. On the other hand, microsomes from alkaline ceramidase (ACER)3 knockdown cells were less competent at hydrolyzing RBM14C12, RBM12C14, and RBM14C16 than controls, while microsomes from ACER2 and ACER3 overexpressing cells showed no activity toward the RBM14 substrates. Conversely, N-acylethanolamine-hydrolyzing acid amidase (NAAA) overexpressing cells hydrolyzed RBM14C14 and RBM14C16 at acidic pH. Overall, NC, ACER3, and, to a lesser extent, NAAA hydrolyze fluorogenic RBM14 compounds. Although the selectivity of the substrates toward ceramidases can be modulated by the length of the N-acyl chain, none of them was specific for a particular enzyme. Despite the lack of specificity, these substrates should prove useful in library screening programs aimed at identifying potent and selective inhibitors for NC and ACER3.


Assuntos
Ceramidase Alcalina/metabolismo , Ceramidas/metabolismo , Ceramidase Neutra/metabolismo , Acilação , Ceramidase Alcalina/deficiência , Ceramidase Alcalina/genética , Animais , Ceramidas/farmacocinética , Cumarínicos/farmacocinética , Corantes Fluorescentes/farmacocinética , Técnicas de Silenciamento de Genes , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Hidrólise , Espectrometria de Massas , Camundongos , Ceramidase Neutra/deficiência , Ceramidase Neutra/genética , Esfingolipídeos/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
8.
J Lipid Res ; 55(8): 1711-20, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24875537

RESUMO

Sphingosine kinase inhibitor (SKI) II has been reported as a dual inhibitor of sphingosine kinases (SKs) 1 and 2 and has been extensively used to prove the involvement of SKs and sphingosine-1-phosphate (S1P) in cellular processes. Dihydroceramide desaturase (Des1), the last enzyme in the de novo synthesis of ceramide (Cer), regulates the balance between dihydroceramides (dhCers) and Cers. Both SKs and Des1 have interest as therapeutic targets. Here we show that SKI II is a noncompetitive inhibitor (Ki = 0.3 µM) of Des1 activity with effect also in intact cells without modifying Des1 protein levels. Molecular modeling studies support that the SKI II-induced decrease in Des1 activity could result from inhibition of NADH-cytochrome b5 reductase. SKI II, but not the SK1-specific inhibitor PF-543, provoked a remarkable accumulation of dhCers and their metabolites, while both SKI II and PF-543 reduced S1P to almost undetectable levels. SKI II, but not PF543, reduced cell proliferation with accumulation of cells in the G0/G1 phase. SKI II, but not PF543, induced autophagy. These overall findings should be taken into account when using SKI II as a pharmacological tool, as some of the effects attributed to decreased S1P may actually be caused by augmented dhCers and/or their metabolites.


Assuntos
Autofagia/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Oxirredutases/antagonistas & inibidores , Oxirredutases/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fase G1/efeitos dos fármacos , Células HeLa , Humanos , Metanol , Pirrolidinas/farmacologia , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Sulfonas/farmacologia
10.
Neurogastroenterol Motil ; : e14897, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39119749

RESUMO

BACKGROUND: Obesity and diabetes are associated with altered gastrointestinal function and with the development of abdominal pain, nausea, diarrhea, and constipation among other symptoms. The enteric nervous system (ENS) regulates gastrointestinal motility. Enteric neuropathies defined as damage or loss of enteric neurons can lead to motility disorders. PURPOSE: Here, we review the molecular mechanisms that drive enteric neurodegeneration in diabetes and obesity, including signaling pathways leading to neuronal cell death, oxidative stress, and microbiota alteration. We also highlight potential approaches to treat enteric neuropathies including antioxidant therapy to prevent oxidative stress-induced damage and the use of stem cells.

11.
J Lipid Res ; 54(5): 1207-20, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23423838

RESUMO

Acid ceramidase (AC) catalyzes the hydrolysis of ceramide into sphingosine, in turn a substrate of sphingosine kinases that catalyze its conversion into the mitogenic sphingosine-1-phosphate. AC is expressed at high levels in several tumor types and has been proposed as a cancer therapeutic target. Using a model derived from PC-3 prostate cancer cells, the highly tumorigenic, metastatic, and chemoresistant clone PC-3/Mc expressed higher levels of the AC ASAH1 than the nonmetastatic clone PC-3/S. Stable knockdown of ASAH1 in PC-3/Mc cells caused an accumulation of ceramides, inhibition of clonogenic potential, increased requirement for growth factors, and inhibition of tumorigenesis and lung metastases. We developed de novo ASAH1 inhibitors, which also caused a dose-dependent accumulation of ceramides in PC-3/Mc cells and inhibited their growth and clonogenicity. Finally, immunohistochemical analysis of primary prostate cancer samples showed that higher levels of ASAH1 were associated with more advanced stages of this neoplasia. These observations confirm ASAH1 as a therapeutic target in advanced and chemoresistant forms of prostate cancer and suggest that our new potent and specific AC inhibitors could act by counteracting critical growth properties of these highly aggressive tumor cells.


Assuntos
Ceramidase Ácida/antagonistas & inibidores , Ceramidase Ácida/genética , Terapia de Alvo Molecular , Neoplasias da Próstata/genética , Ceramidase Ácida/metabolismo , Apoptose/genética , Linhagem Celular Tumoral , Ceramidas/metabolismo , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Lisofosfolipídeos/metabolismo , Masculino , Metástase Neoplásica , Neoplasias da Próstata/patologia , Neoplasias da Próstata/terapia , Esfingosina/análogos & derivados , Esfingosina/metabolismo
12.
Sci Adv ; 9(8): eade8653, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36827370

RESUMO

During aging, environmental stressors and mutations along with reduced DNA repair cause germ cell aneuploidy and genome instability, which limits fertility and embryo development. Benevolent commensal microbiota and dietary plants secrete indoles, which improve healthspan and reproductive success, suggesting regulation of germ cell quality. We show that indoles prevent aneuploidy and promote DNA repair and embryo viability, which depends on age and genotoxic stress levels and affects embryo quality across generations. In young animals or with low doses of radiation, indoles promote DNA repair and embryo viability; however, in older animals or with high doses of radiation, indoles promote death of the embryo. These studies reveal a previously unknown quality control mechanism by which indole integrates DNA repair and cell death responses to preclude germ cell aneuploidy and ensure transgenerational genome integrity. Such regulation affects healthy aging, reproductive senescence, cancer, and the evolution of genetic diversity in invertebrates and vertebrates.


Assuntos
Aneuploidia , Microbiota , Animais , Reparo do DNA , Morte Celular , Indóis
13.
Hepatol Commun ; 6(5): 980-994, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34936222

RESUMO

Activation of extracellular signal-regulated kinase (ERK) 1/2 promotes hepatocyte proliferation in response to growth stimuli, but whether constitutive hepatocyte ERK1/2 signaling functions in liver physiology is unknown. To examine the role of ERK1/2 in hepatic homeostasis, the effects of a knockout of Erk1 and/or Erk2 in mouse liver were examined. The livers of mice with a global Erk1 knockout or a tamoxifen-inducible, hepatocyte-specific Erk2 knockout were normal. In contrast, Erk1/2 double-knockout mice developed hepatomegaly and hepatitis by serum transaminases, histology, terminal deoxynucleotide transferase-mediated deoxyuridine triphosphate nick end-labeling, and assays of hepatic inflammation. Liver injury was associated with biochemical evidence of cholestasis with increased serum and hepatic bile acids and led to hepatic fibrosis and mortality. RNA sequencing and polymerase chain reaction analysis of double-knockout mouse livers revealed that the rate-limiting bile acid synthesis gene Cyp7a1 (cholesterol 7α-hydroxylase) was up-regulated in concert with decreased expression of the transcriptional repressor short heterodimer partner. Elevated bile acids were the mechanism of liver injury, as bile acid reduction by SC-435, an inhibitor of the ileal apical sodium-dependent bile acid transporter, prevented liver injury. Conclusion: Constitutive ERK1 and ERK2 signaling has a redundant but critical physiological function in the down-regulation of hepatic bile acid synthesis to maintain normal liver homeostasis.


Assuntos
Ácidos e Sais Biliares , Sistema de Sinalização das MAP Quinases , Animais , Ácidos e Sais Biliares/metabolismo , Regulação para Baixo , Homeostase/genética , Fígado , Camundongos , Camundongos Knockout
14.
PLoS One ; 17(3): e0264743, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35231062

RESUMO

Fibroblast growth factor 23 (FGF23) is a bone marrow cell produced hormone that functions in the intestine and kidney to regulate phosphate homeostasis. Increased serum FGF23 is a well-established predictor of mortality in renal disease, but recent findings linking increased levels to hepatic and cardiac diseases have suggested that other organs are sources of FGF23 or targets of its effects. The potential ability of the liver to produce FGF23 in response to hepatocellular injury was therefore examined. Very low levels of Fgf23 mRNA and FGF23 protein were detected in normal mouse liver, but the amounts increased markedly during acute liver injury from the hepatotoxin carbon tetrachloride. Serum levels of intact FGF23 were elevated during liver injury from carbon tetrachloride. Chronic liver injury induced by a high fat diet or elevated bile acids also increased hepatic FGF23 levels. Stimulation of toll-like receptor (TLR) 4-driven inflammation by gut-derived lipopolysaccharide (LPS) underlies many forms of liver injury, and LPS induced Fgf23 in the liver as well as in other organs. The LPS-inducible cytokines IL-1ß and TNF increased hepatic Fgf23 expression as did a TLR2 agonist Pam2CSK3. Analysis of Fgf23 expression and FGF23 secretion in different hepatic cell types involved in liver injury identified the resident liver macrophage or Kupffer cell as a source of hepatic FGF23. LPS and cytokines selectively induced the hormone in these cells but not in hepatocytes or hepatic stellate cells. FGF23 failed to exert any autocrine effect on the inflammatory state of Kupffer cells but did trigger proinflammatory activation of hepatocytes. During liver injury inflammatory factors induce Kupffer cell production of FGF23 that may have a paracrine proinflammatory effect on hepatocytes. Liver-produced FGF23 may have systemic hormonal effects as well that influence diseases in in other organs.


Assuntos
Tetracloreto de Carbono , Células de Kupffer , Animais , Tetracloreto de Carbono/farmacologia , Citocinas/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Hepatócitos/metabolismo , Hormônios/metabolismo , Células de Kupffer/metabolismo , Lipopolissacarídeos/farmacologia , Fígado/metabolismo , Camundongos
15.
Trends Endocrinol Metab ; 27(10): 696-705, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27365163

RESUMO

The selective breakdown by autophagy of lipid droplet (LD)-stored lipids, termed lipophagy, is a lysosomal lipolytic pathway that complements the actions of cytosolic neutral lipases. The physiological importance of lipophagy has been demonstrated in multiple mammalian cell types, as well as in lower organisms, and this pathway has many functions in addition to supplying free fatty acids to maintain cellular energy stores. Recent studies have begun to delineate the molecular mechanisms of the selective recognition of LDs by the autophagic machinery, as well as the intricate crosstalk between the different forms of autophagy and neutral lipases. These studies have led to increased interest in the role of lipophagy in both human disease pathogenesis and therapy.


Assuntos
Autofagia/fisiologia , Lipólise/fisiologia , Animais , Autofagia/genética , Humanos , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/fisiologia , Lipólise/genética , Perilipina-1/metabolismo
16.
Chem Phys Lipids ; 197: 25-32, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26248326

RESUMO

Sphingolipid metabolism consists of multiple metabolic pathways that converge upon ceramide, one of the key molecules among sphingolipids (SLs). In mammals, ceramide synthesis occurs via N-acylation of sphingoid backbones, dihydrosphingosine (dhSo) or sphingosine (So). The reaction is catalyzed by ceramide synthases (CerS), a family of enzymes with six different isoforms, with each one showing specificity towards a restricted group of acyl-CoAs, thus producing ceramides (Cer) and dihydroceramides (dhCer) with different fatty acid chain lengths. A large body of evidence documents the role of both So and dhSo as bioactive molecules, as well as the involvement of dhCer and Cer in physiological and pathological processes. In particular, the fatty acid composition of Cer has different effects in cell biology and in the onset and progression of different diseases. Therefore, modulation of CerS activity represents an attractive target in biomedical research and in finding new treatment modalities. In this review, we discuss functional, structural and biochemical features of CerS and examine CerS inhibitors that are currently available.


Assuntos
Pesquisa Biomédica , Oxirredutases/metabolismo , Oxirredutases/química , Conformação Proteica , Frações Subcelulares/enzimologia , Frações Subcelulares/metabolismo
17.
Prog Lipid Res ; 51(2): 82-94, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22200621

RESUMO

Sphingolipids are a wide family of lipids that share common sphingoid backbones, including (2S,3R)-2-amino-4-octadecane-1,3-diol (dihydrosphingosine) and (2S,3R,4E)-2-amino-4-octadecene-1,3-diol (sphingosine). The metabolism and biological functions of sphingolipids derived from sphingosine have been the subject of many reviews. In contrast, dihydrosphingolipids have received poor attention, mainly due to their supposed lack of biological activity. However, the reported biological effects of active site directed dihydroceramide desaturase inhibitors and the involvement of dihydrosphingolipids in the response of cells to known therapeutic agents support that dihydrosphingolipids are not inert but are in fact biologically active and underscore the importance of elucidating further the metabolic pathways and cell signaling networks involved in the biological activities of dihydrosphingolipids. Dihydroceramide desaturase is the enzyme involved in the conversion of dihydroceramide into ceramide and it is crucial in the regulation of the balance between sphingolipids and dihydrosphingolipids. Furthermore, given the enzyme requirement for O2 and the NAD(P)H cofactor, the cellular redox balance and dihydroceramide desaturase activity may reciprocally influence each other. In this review both dihydroceramide desaturase and the biological functions of dihydrosphingolipids are addressed and perspectives on this field are discussed.


Assuntos
Oxirredutases/metabolismo , Esfingolipídeos/metabolismo , Animais , Apoptose/efeitos dos fármacos , Ceramidas/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , NADP/metabolismo , Oxirredutases/antagonistas & inibidores , Oxirredutases/genética , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA