Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Int J Mol Sci ; 23(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35806218

RESUMO

Despite the recent development of precision medicine and targeted therapies, lung cancer remains the top cause of cancer-related mortality worldwide. The patients diagnosed with metastatic disease have a five-year survival rate lower than 6%. In metastatic disease, EGFR is the most common driver of mutation, with the most common co-driver hitting TP53. EGFR-positive patients are offered the frontline treatment with tyrosine kinase inhibitors, yet the development of resistance and the lack of alternative therapies make this group of patients only fit for clinical trial participation. Since mutant p53 is the most common co-driver in the metastatic setting, therapies reactivating the p53 pathway might serve as a promising alternative therapeutic approach in patients who have developed a resistance to tyrosine kinase inhibitors. This review focuses on the molecular background of EGFR-mutated lung cancer and discusses novel therapeutic options converging on the reactivation of p53 tumor suppressor pathways.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteína Supressora de Tumor p53/genética
2.
Haematologica ; 105(5): 1317-1328, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31467126

RESUMO

Despite substantial progress in treatment of T-cell acute lymphoblastic leukemia (T-ALL), mortality remains relatively high, mainly due to primary or acquired resistance to chemotherapy. Further improvements in survival demand better understanding of T-ALL biology and development of new therapeutic strategies. The Notch pathway has been involved in the pathogenesis of this disease and various therapeutic strategies are currently under development, including selective targeting of NOTCH receptors by inhibitory antibodies. We previously demonstrated that the NOTCH1-specific neutralizing antibody OMP52M51 prolongs survival in TALL patient-derived xenografts bearing NOTCH1/FBW7 mutations. However, acquired resistance to OMP52M51 eventually developed and we used patient-derived xenografts models to investigate this phenomenon. Multi-level molecular characterization of T-ALL cells resistant to NOTCH1 blockade and serial transplantation experiments uncovered heterogeneous types of resistance, not previously reported with other Notch inhibitors. In one model, resistance appeared after 156 days of treatment, it was stable and associated with loss of Notch inhibition, reduced mutational load and acquired NOTCH1 mutations potentially affecting the stability of the heterodimerization domain. Conversely, in another model resistance developed after only 43 days of treatment despite persistent down-regulation of Notch signaling and it was accompanied by modulation of lipid metabolism and reduced surface expression of NOTCH1. Our findings shed light on heterogeneous mechanisms adopted by the tumor to evade NOTCH1 blockade and support clinical implementation of antibody-based target therapy for Notch-addicted tumors.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Animais , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Receptor Notch1/genética , Transdução de Sinais , Linfócitos T , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Int J Mol Sci ; 21(20)2020 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-33081056

RESUMO

The Myc family of oncogenes is deregulated in many types of cancer, and their over-expression is often correlated with poor prognosis. The Myc family members are transcription factors that can coordinate the expression of thousands of genes. Among them, c-Myc (MYC) is the gene most strongly associated with cancer, and it is the focus of this review. It regulates the expression of genes involved in cell proliferation, growth, differentiation, self-renewal, survival, metabolism, protein synthesis, and apoptosis. More recently, novel studies have shown that MYC plays a role not only in tumor initiation and growth but also has a broader spectrum of functions in tumor progression. MYC contributes to angiogenesis, immune evasion, invasion, and migration, which all lead to distant metastasis. Moreover, MYC is able to promote tumor growth and aggressiveness by recruiting stromal and tumor-infiltrating cells. In this review, we will dissect all of these novel functions and their involvement in the crosstalk between tumor and host, which have demonstrated that MYC is undoubtedly the master regulator of the tumor microenvironment. In sum, a better understanding of MYC's role in the tumor microenvironment and metastasis development is crucial in proposing novel and effective cancer treatment strategies.


Assuntos
Metástase Neoplásica/patologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Microambiente Tumoral , Animais , Transição Epitelial-Mesenquimal , Humanos , Evasão da Resposta Imune , Modelos Biológicos
4.
Molecules ; 23(8)2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-30103421

RESUMO

Reversine is a potent antitumor 2,6-diamino-substituted purine acting as an Aurora kinases inhibitor and interfering with cancer cell cycle progression. In this study we describe three reversine-related molecules, designed by docking calculation, that present structural modifications in the diamino units at positions 2 and 6. We investigated the conformations of the most stable prototropic tautomers of one of these molecules, the N6-cyclohexyl-N6-methyl-N2-phenyl-7H-purine-2,6-diamine (3), by Density Functional Theory (DFT) calculation in the gas phase, water and chloroform, the last solvent considered to give insights into the detection of broad signals in NMR analysis. In all cases the HN(9) tautomer resulted more stable than the HN(7) form, but the most stable conformations changed in different solvents. Molecules 1⁻3 were evaluated on MCF-7 breast and HCT116 colorectal cancer cell lines showing that, while being less cytotoxic than reversine, they still caused cell cycle arrest in G2/M phase and polyploidy. Unlike reversine, which produced a pronounced cell cycle arrest in G2/M phase in all the cell lines used, similar concentrations of 1⁻3 were effective only in cells where p53 was deleted or down-regulated. Therefore, our findings support a potential selective role of these structurally simplified, reversine-related molecules in p53-defective cancer cells.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Purinas/síntese química , Purinas/farmacologia , Antineoplásicos/química , Neoplasias da Mama , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Química Sintética , Neoplasias Colorretais , Feminino , Humanos , Masculino , Micro-Ondas , Estrutura Molecular , Purinas/química , Relação Estrutura-Atividade
5.
Nucleic Acids Res ; 43(22): e153, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26240374

RESUMO

Fluctuations in mRNA levels only partially contribute to determine variations in mRNA availability for translation, producing the well-known poor correlation between transcriptome and proteome data. Recent advances in microscopy now enable researchers to obtain high resolution images of ribosomes on transcripts, providing precious snapshots of translation in vivo. Here we propose RiboAbacus, a mathematical model that for the first time incorporates imaging data in a predictive model of transcript-specific ribosome densities and translational efficiencies. RiboAbacus uses a mechanistic model of ribosome dynamics, enabling the quantification of the relative importance of different features (such as codon usage and the 5' ramp effect) in determining the accuracy of predictions. The model has been optimized in the human Hek-293 cell line to fit thousands of images of human polysomes obtained by atomic force microscopy, from which we could get a reference distribution of the number of ribosomes per mRNA with unmatched resolution. After validation, we applied RiboAbacus to three case studies of known transcriptome-proteome datasets for estimating the translational efficiencies, resulting in an increased correlation with corresponding proteomes. RiboAbacus is an intuitive tool that allows an immediate estimation of crucial translation properties for entire transcriptomes, based on easily obtainable transcript expression levels.


Assuntos
Modelos Biológicos , Polirribossomos/ultraestrutura , Biossíntese de Proteínas , Transcriptoma , Animais , Células HEK293 , Humanos , Células MCF-7 , Microscopia de Força Atômica , Proteômica , Coelhos , Reticulócitos/ultraestrutura , Ribossomos/ultraestrutura , Software
6.
BMC Genomics ; 16: 464, 2015 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-26081755

RESUMO

BACKGROUND: Many recent studies using ChIP-seq approaches cross-referenced to trascriptome data and also to potentially unbiased in vitro DNA binding selection experiments are detailing with increasing precision the p53-directed gene regulatory network that, nevertheless, is still expanding. However, most experiments have been conducted in established cell lines subjected to specific p53-inducing stimuli, both factors potentially biasing the results. RESULTS: We developed p53retriever, a pattern search algorithm that maps p53 response elements (REs) and ranks them according to predicted transactivation potentials in five classes. Besides canonical, full site REs, we developed specific pattern searches for non-canonical half sites and 3/4 sites and show that they can mediate p53-dependent responsiveness of associated coding sequences. Using ENCODE data, we also mapped p53 REs in about 44,000 distant enhancers and identified a 16-fold enrichment for high activity REs within those sites in the comparison with genomic regions near transcriptional start sites (TSS). Predictions from our pattern search were cross-referenced to ChIP-seq, ChIP-exo, expression, and various literature data sources. Based on the mapping of predicted functional REs near TSS, we examined expression changes of thirteen genes as a function of different p53-inducing conditions, providing further evidence for PDE2A, GAS6, E2F7, APOBEC3H, KCTD1, TRIM32, DICER, HRAS, KITLG and TGFA p53-dependent regulation, while MAP2K3, DNAJA1 and potentially YAP1 were identified as new direct p53 target genes. CONCLUSIONS: We provide a comprehensive annotation of canonical and non-canonical p53 REs in the human genome, ranked on predicted transactivation potential. We also establish or corroborate direct p53 transcriptional control of thirteen genes. The entire list of identified and functionally classified p53 REs near all UCSC-annotated genes and within ENCODE mapped enhancer elements is provided. Our approach is distinct from, and complementary to, existing methods designed to identify p53 response elements. p53retriever is available as an R package at: http://tomateba.github.io/p53retriever .


Assuntos
Genoma Humano , Elementos de Resposta/genética , Proteína Supressora de Tumor p53/genética , Algoritmos , Sítios de Ligação , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Bases de Dados Genéticas , Doxorrubicina/farmacologia , Humanos , Imidazóis/farmacologia , Internet , Piperazinas/farmacologia , Regiões Promotoras Genéticas , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Elementos de Resposta/efeitos dos fármacos , Sítio de Iniciação de Transcrição , Ativação Transcricional , Transcriptoma/efeitos dos fármacos , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/metabolismo , Interface Usuário-Computador
7.
Nucleic Acids Res ; 41(18): 8637-53, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23892287

RESUMO

Structural and biochemical studies have demonstrated that p73, p63 and p53 recognize DNA with identical amino acids and similar binding affinity. Here, measuring transactivation activity for a large number of response elements (REs) in yeast and human cell lines, we show that p53 family proteins also have overlapping transactivation profiles. We identified mutations at conserved amino acids of loops L1 and L3 in the DNA-binding domain that tune the transactivation potential nearly equally in p73, p63 and p53. For example, the mutant S139F in p73 has higher transactivation potential towards selected REs, enhanced DNA-binding cooperativity in vitro and a flexible loop L1 as seen in the crystal structure of the protein-DNA complex. By studying, how variations in the RE sequence affect transactivation specificity, we discovered a RE-transactivation code that predicts enhanced transactivation; this correlation is stronger for promoters of genes associated with apoptosis.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas Nucleares/química , Elementos de Resposta , Transativadores/química , Ativação Transcricional , Proteína Supressora de Tumor p53/química , Proteínas Supressoras de Tumor/química , Alelos , Sequência de Bases , Linhagem Celular Tumoral , Sequência Consenso , DNA/química , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenótipo , Fenilalanina/química , Estrutura Terciária de Proteína , Purinas/análise , Pirimidinas/análise , Saccharomyces cerevisiae/genética , Análise de Sequência de DNA , Transativadores/genética , Transativadores/metabolismo , Proteína Tumoral p73 , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
8.
Hum Mutat ; 35(6): 689-701, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24449472

RESUMO

Loss-of-function, partial-function, altered-function, dominant-negative, temperature sensitive, interfering, contact, structural, unfolded, misfolded, dimeric, monomeric, non-cooperative, unstable, supertrans, superstable, intragenic suppressor. TP53 mutants are many, more than 2,000 in fact, and they can be very diverse. Sporadic; germline; gain-of-function (GoF); oncogenic; rebel-angel; yin and yang; prion-like; metastasis-inducer; mediator of chemo-resistance; modifier of stemness. TP53 mutants can impact important cancer clinical variables, in multiple, often subtle ways, as revealed by cell-based assays as well as animal models. Here, we review studies investigating TP53 mutants for their effect on sequence-specific transactivation function, and especially recent findings on how TP53 mutants can exhibit GoF properties. We also review reports on TP53 mutants' impact on cancer cell transcriptomes and studies with Li-Fraumeni patients trying to classify and predict phenotypes in relation to experimentally determined transcription fingerprints. Finally, we provide an example of the complexity of correlating TP53 mutant functionality to clinical variables in sporadic cancer patients. Conflicting results and limitations of experimental approaches notwithstanding, the study of TP53 mutants has provided a rich body of knowledge, mostly available in the public domain and accessible through databases, which is beginning to impact cancer intervention strategies.


Assuntos
Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Síndrome de Li-Fraumeni/genética , Proteína Supressora de Tumor p53/genética , Bases de Dados Genéticas , Genótipo , Humanos , Síndrome de Li-Fraumeni/patologia , Fenótipo , Proteína Supressora de Tumor p53/metabolismo
9.
J Clin Med ; 13(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38930141

RESUMO

Estrogen receptor (ER)-positive breast cancer (BC) is the most common BC subtype. Endocrine therapy (ET) targeting ER signaling still remains the mainstay treatment option for hormone receptor (HR)-positive BC either in the early or in advanced setting, including different strategies, such as the suppression of estrogen production or directly blocking the ER pathway through SERMs-selective estrogen receptor modulators-or SERDs-selective estrogen receptor degraders. Nevertheless, the development of de novo or acquired endocrine resistance still remains challenging for oncologists. The use of novel ET combined with targeted drugs, such as cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors, has significantly improved long-term outcome rates, thus changing the therapeutic algorithm for metastatic BC (MBC) and recently the therapeutic strategy in the adjuvant setting for early high-risk BC. Eluding the resistance to CDK4/6 inhibitors combined with ET is currently an unmet medical need, and there is disagreement concerning the best course of action for patients who continue to progress after this combination approach. Genetic changes in the tumor along its growth uncovered by genomic profiling of recurrent and/or metastatic lesions through tumor and/or liquid biopsies may predict the response or resistance to specific agents, suggesting the best therapeutic strategy for each patient by targeting the altered ER-dependent pathway (novel oral SERDs and a new generation of anti-estrogen agents) or alternative ER-independent signaling pathways such as PI3K/AKT/mTOR or tyrosine kinase receptors (HER2 mutations or HER2 low status) or by inhibiting pathways weakened through germline BRCA1/2 mutations. These agents are being investigated as single molecules and in combination with other target therapies, offering promising weapons to overcome or avoid treatment failure and propose increasingly more personalized treatment approaches. This review presents novel insights into ET and other targeted therapies for managing metastatic HR+/HER2- BC by exploring potential strategies based on clinical evidence and genomic profiling following the failure of the CDK4/6i and ET combination.

10.
BMC Cancer ; 13: 552, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24256616

RESUMO

BACKGROUND: The tumor suppressor p53 is a sequence-specific transcription factor that regulates an extensive network of coding genes, long non-coding RNAs and microRNAs, that establish intricate gene regulatory circuits influencing many cellular responses beyond the prototypical control of cell cycle, apoptosis and DNA repair. METHODS: Using bioinformatic approaches, we identified an additional group of candidate microRNAs (miRs) under direct p53 transcriptional control. To validate p53 family-mediated responsiveness of the newly predicted target miRs we first evaluated the potential for wild type p53, p63ß and p73ß to transactivate from p53 response elements (REs) mapped in the miR promoters, using an established yeast-based assay. RESULTS: The REs found in miR-10b, -23b, -106a, -151a, -191, -198, -202, -221, -320, -1204, -1206 promoters were responsive to p53 and 8 of them were also responsive to p63ß or p73ß. The potential for germline p53 mutations to drive transactivation at selected miR-associated REs was also examined. Chromatin Immuno-Precipitation (ChIP) assays conducted in doxorubicin-treated MCF7 cells and HCT116 p53+/+ revealed moderate induction of p53 occupancy at the miR-202, -1204, -1206, -10b RE-containing sites, while weak occupancy was observed for the miR-23b-associated RE only in MCF7 cells. RT-qPCR analyses cells showed modest doxorubicin- and/or Nutlin-dependent induction of the levels of mature miR-10b, -23b, -151a in HCT116 p53+/+ and MCF7 cells. The long noncoding RNA PVT1 comprising miR-1204 and -1206 was weakly induced only in HCT116 p53+/+ cells, but the mature miRs were not detected. miR-202 expression was not influenced by p53-activating stimuli in our cell systems. CONCLUSIONS: Our study reveals additional miRs, particularly miR-10b and miR-151a, that could be directly regulated by the p53-family of transcription factors and contribute to the tuning of p53-induced responses.


Assuntos
Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Proteína Supressora de Tumor p53/fisiologia , Antibióticos Antineoplásicos/farmacologia , Sítios de Ligação , Cromatina , Biologia Computacional , Proteínas de Ligação a DNA/fisiologia , Doxorrubicina/farmacologia , Genes Reporter , Células HCT116 , Humanos , Luciferases de Vaga-Lume/biossíntese , Luciferases de Vaga-Lume/genética , Células MCF-7 , MicroRNAs/metabolismo , Proteínas Nucleares/fisiologia , Regiões Promotoras Genéticas , Ligação Proteica , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Elementos de Resposta , Saccharomyces cerevisiae , Fatores de Transcrição/fisiologia , Ativação Transcricional , Proteína Tumoral p73 , Proteínas Supressoras de Tumor/fisiologia
11.
Semin Oncol ; 50(3-5): 90-101, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37673696

RESUMO

Endocrine therapy (ET) targeting estrogen receptor (ER) signaling is still the mainstay treatment option for early or advanced ER-positive breast cancer (BC) and may involve suppressing estrogen production by means of aromatase inhibitors or directly blocking the ER pathway through selective estrogen receptor modulators such as tamoxifen or selective estrogen receptor degraders such as fulvestrant. However, despite the availability of this armamentarium in clinical practice, de novo or acquired resistance to ET is the main cause of endocrine-based treatment failure leading to the progression of the BC. Recent advances in targeting, modulating, and degrading ERs have led to the development of new drugs capable of overcoming intrinsic or acquired ET resistance related to alterations in the ESR1 gene. The new oral selective estrogen receptor degraders, which are capable of reducing ER protein expression and blocking estrogen-dependent and -independent ER signaling, have a broader spectrum of activity against ESR1 mutations and seem to be a promising means of overcoming the failure of standard ET. The aim of this review is to summarize the development of oral selective estrogen receptor degraders, their current status, and their future perspectives.

12.
Cell Death Dis ; 14(4): 263, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37041130

RESUMO

The transcription factor ETV7 is an oncoprotein that is up-regulated in all breast cancer (BC) types. We have recently demonstrated that ETV7 promoted breast cancer progression by increasing cancer cell proliferation and stemness and was also involved in the development of chemo- and radio-resistance. However, the roles of ETV7 in breast cancer inflammation have yet to be studied. Gene ontology analysis previously performed on BC cells stably over-expressing ETV7 demonstrated that ETV7 was involved in the suppression of innate immune and inflammatory responses. To better decipher the involvement of ETV7 in these signaling pathways, in this study, we identified TNFRSF1A, encoding for the main receptor of TNF-α, TNFR1, as one of the genes down-regulated by ETV7. We demonstrated that ETV7 directly binds to the intron I of this gene, and we showed that the ETV7-mediated down-regulation of TNFRSF1A reduced the activation of NF-κB signaling. Furthermore, in this study, we unveiled a potential crosstalk between ETV7 and STAT3, another master regulator of inflammation. While it is known that STAT3 directly up-regulates the expression of TNFRSF1A, here we demonstrated that ETV7 reduces the ability of STAT3 to bind to the TNFRSF1A gene via a competitive mechanism, recruiting repressive chromatin remodelers, which results in the repression of its transcription. The inverse correlation between ETV7 and TNFRSF1A was confirmed also in different cohorts of BC patients. These results suggest that ETV7 can reduce the inflammatory responses in breast cancer through the down-regulation of TNFRSF1A.


Assuntos
Neoplasias da Mama , NF-kappa B , Humanos , Feminino , NF-kappa B/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Neoplasias da Mama/genética , Transdução de Sinais , Inflamação , Proteínas Proto-Oncogênicas c-ets/metabolismo
13.
Hum Mol Genet ; 18(19): 3567-78, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19586923

RESUMO

Heart and neural crest derivatives expressed 1 (HAND1) is a basic helix-loop-helix (bHLH) transcription factor essential for mammalian heart development. Absence of Hand1 in mice results in embryonal lethality, as well as in a wide spectrum of cardiac abnormalities including failed cardiac looping, defective chamber septation and impaired ventricular development. Therefore, Hand1 is a strong candidate for the many cardiac malformations observed in human congenital heart disease (CHD). Recently, we identified a loss-of-function frameshift mutation (p.A126fs) in the bHLH domain of HAND1 frequent in hypoplastic hearts. This finding prompted us to continue our search for HAND1 gene mutations in a different cohort of malformed hearts affected primarily by septation defects. Indeed, in tissue samples of septal defects, we detected 32 sequence alterations leading to amino acid change, of which 12 are in the bHLH domain of HAND1. Interestingly, 10 sequence alterations, such as p.L28H and p.L138P, had been identified earlier in hypoplastic hearts, but the frequent p.A126fs mutation was absent except in one aborted case with ventricular septal defect and outflow tract abnormalities. Functional studies in yeast and mammalian cells enabled translation of sequence alterations to HAND1 transcriptional activity, which was reduced or abolished by certain mutations, notably p.L138P. Our results suggest that HAND1 may also be affected in septation defects of the human hearts, and thus has a broader role in human heart development and CHD.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Defeitos dos Septos Cardíacos/genética , Septos Cardíacos/metabolismo , Mutação , Sequência de Aminoácidos , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem Celular , Estudos de Coortes , Defeitos dos Septos Cardíacos/metabolismo , Septos Cardíacos/química , Humanos , Dados de Sequência Molecular , Estrutura Terciária de Proteína
14.
Cell Death Dis ; 12(8): 742, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315857

RESUMO

Cancer stem cells (CSCs) represent a population of cells within the tumor able to drive tumorigenesis and known to be highly resistant to conventional chemotherapy and radiotherapy. In this work, we show a new role for ETV7, a transcriptional repressor member of the ETS family, in promoting breast cancer stem-like cells plasticity and resistance to chemo- and radiotherapy in breast cancer (BC) cells. We observed that MCF7 and T47D BC-derived cells stably over-expressing ETV7 showed reduced sensitivity to the chemotherapeutic drug 5-fluorouracil and to radiotherapy, accompanied by an adaptive proliferative behavior observed in different culture conditions. We further noticed that alteration of ETV7 expression could significantly affect the population of breast CSCs, measured by CD44+/CD24low cell population and mammosphere formation efficiency. By transcriptome profiling, we identified a signature of Interferon-responsive genes significantly repressed in cells over-expressing ETV7, which could be responsible for the increase in the breast CSCs population, as this could be partially reverted by the treatment with IFN-ß. Lastly, we show that the expression of the IFN-responsive genes repressed by ETV7 could have prognostic value in breast cancer, as low expression of these genes was associated with a worse prognosis. Therefore, we propose a novel role for ETV7 in breast cancer stem cells' plasticity and associated resistance to conventional chemotherapy and radiotherapy, which involves the repression of a group of IFN-responsive genes, potentially reversible upon IFN-ß treatment. We, therefore, suggest that an in-depth investigation of this mechanism could lead to novel breast CSCs targeted therapies and to the improvement of combinatorial regimens, possibly involving the therapeutic use of IFN-ß, with the aim of avoiding resistance development and relapse in breast cancer.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Regulação Neoplásica da Expressão Gênica , Interferons/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas Proto-Oncogênicas c-ets/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/radioterapia , Linhagem Celular Tumoral , Plasticidade Celular , Proliferação de Células/efeitos dos fármacos , Feminino , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Prognóstico , Proteínas Proto-Oncogênicas c-ets/genética , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Ensaio Tumoral de Célula-Tronco
15.
Cancers (Basel) ; 13(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34680379

RESUMO

Cutaneous melanoma is the most aggressive form of skin cancer. Despite the significant advances in the management of melanoma in recent decades, it still represents a challenge for clinicians. The TP53 gene, the guardian of the genome, which is altered in more than 50% of human cancers, is rarely mutated in melanoma. More recently, researchers started to appreciate the importance of shorter p53 isoforms as potential modifiers of the p53-dependent responses. We analyzed the expression of p53 and p73 isoforms both at the RNA and protein level in a panel of melanoma-derived cell lines with different TP53 and BRAF status, in normal conditions or upon treatment with common anti-cancer DNA damaging agents or targeted therapy. Using lentiviral vectors, we also generated stable clones of H1299 p53 null cells over-expressing the less characterized isoforms Δ160p53α, Δ160p53ß, and Δ160p53γ. Further, we obtained two melanoma-derived cell lines resistant to BRAF inhibitor vemurafenib. We observed that melanoma cell lines expressed a wide array of p53 and p73 isoforms, with Δ160p53α as the most variable one. We demonstrated for the first time that Δ160p53α, and to a lesser extent Δ160p53ß, can be recruited on chromatin, and that Δ160p53γ can localize in perinuclear foci; moreover, all Δ160p53 isoforms can stimulate proliferation and in vitro migration. Lastly, vemurafenib-resistant melanoma cells showed an altered expression of p53 and p73 isoforms, namely an increased expression of potentially pro-oncogenic Δ40p53ß and a decrease in tumor-suppressive TAp73ß. We therefore propose that p53 family isoforms can play a role in melanoma cells' aggressiveness.

16.
Hum Mol Genet ; 17(10): 1397-405, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18276607

RESUMO

Hypoplasia of the human heart is the most severe form of congenital heart disease (CHD) and usually lethal during early infancy. It is a leading cause of neonatal loss, especially in infants diagnosed with hypoplastic left heart syndrome (HLHS), a condition where the left side of the heart including the aorta, aortic valve, left ventricle (LV) and mitral valve are underdeveloped. The molecular causes of HLHS are unclear, but the basic helix-loop-helix (bHLH) transcription factor heart and neural crest derivatives expressed 1 (Hand1), may be a candidate culprit for this condition. The absence of Hand1 in mice resulted in the failure of rightward looping of the heart tube, a severely hypoplastic LV and outflow tract abnormalities. Nonetheless, no HAND1 mutations associated with human CHD have been reported so far. We sequenced the human HAND1 gene in heart tissues derived from 31 unrelated patients diagnosed with hypoplastic hearts. We detected in 24 of 31 hypoplastic ventricles, a common frameshift mutation (A126fs) in the bHLH domain, which is necessary for DNA binding and combinatorial interactions. The resulting mutant protein, unlike wild-type (wt) HAND1, was unable to modulate transcription of reporter constructs containing specific DNA-binding sites. Thus, in hypoplastic human hearts HAND1 function is impaired.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Mutação da Fase de Leitura , Coração/embriologia , Síndrome do Coração Esquerdo Hipoplásico/genética , Doenças do Recém-Nascido/genética , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Coração/fisiopatologia , Humanos , Síndrome do Coração Esquerdo Hipoplásico/embriologia , Síndrome do Coração Esquerdo Hipoplásico/fisiopatologia , Lactente , Recém-Nascido , Doenças do Recém-Nascido/embriologia , Doenças do Recém-Nascido/fisiopatologia , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Análise de Sequência de DNA , Ativação Transcricional
17.
DNA Repair (Amst) ; 7(3): 431-8, 2008 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-18182332

RESUMO

The relative toxicity and mutagenicity of Me-lex, which selectively generates 3-methyladenine (3-MeA), is dependent on the nature of the DNA repair background. Base excision repair (BER)-defective S. cerevisiae strains mag1 and apn1apn2 were both significantly more sensitive to Me-lex toxicity, but only the latter is significantly more prone to Me-lex-induced mutagenesis. To examine the contribution of translesion synthesis (TLS) DNA polymerases in the bypass of Me-lex-induced lesions, the REV3 and REV1 genes were independently deleted in the parental yeast strain and in different DNA repair-deficient derivatives: the nucleotide excision repair (NER)-deficient rad14, and the BER-deficient mag1 or apn1apn2 strains. The strains contained an integrated ADE2 reporter gene under control of the transcription factor p53. A centromeric yeast expression vector containing the wild-type p53 cDNA was treated in vitro with increasing concentrations of Me-lex and transformed into the different yeast strains. The toxicity of Me-lex-induced lesions was evaluated based on the plasmid transformation efficiency compared to the untreated vector, while Me-lex mutagenicity was assessed using the p53 reporter assay. In the present study, we demonstrate that disruption of Polzeta (through deletion of its catalytic subunit coded by REV3) or Rev1 (by REV1 deletion) increased Me-lex lethality and decreased Me-lex mutagenicity in both the NER-defective (rad14) and BER-defective (mag1; apn1apn2) strains. Therefore, Polzeta and Rev1 contribute to resistance of the lethal effects of Me-lex-induced lesions (3-MeA and derived AP sites) by bypassing lesions and fixing some mutations.


Assuntos
Adenina/análogos & derivados , Antimutagênicos/farmacologia , Metilação de DNA/efeitos dos fármacos , Mutagênicos/toxicidade , Netropsina/análogos & derivados , Nucleotidiltransferases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenina/química , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Reparo do DNA/fisiologia , Enzimas Reparadoras do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Netropsina/toxicidade , Nucleotidiltransferases/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteína Supressora de Tumor p53
18.
Sci Rep ; 9(1): 15172, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31645610

RESUMO

We present a new model of ESR1 network regulation based on analysis of Doxorubicin, Estradiol, and TNFα combination treatment in MCF-7. We used Doxorubicin as a therapeutic agent, TNFα as marker and mediator of an inflammatory microenvironment and 17ß-Estradiol (E2) as an agonist of Estrogen Receptors, known predisposing factor for hormone-driven breast cancer, whose pharmacological inhibition reduces the risk of breast cancer recurrence. Based on the results of transcriptomics analysis, we found 71 differentially expressed genes that are specific for the combination treatment with Doxorubicin + Estradiol + TNFα in comparison with single or double treatments. The responsiveness to the triple treatment was examined for seven genes by qPCR, of which six were validated, and then extended to four additional cell lines differing for p53 and/or ER status. The results of differential regulation enrichment analysis highlight the role of the ESR1 network that included 36 of 71 specific differentially expressed genes. We propose that the combined activation of p53 and NF-kB transcription factors significantly influences ligand-dependent, ER-driven transcriptional responses, also of the ESR1 gene itself. These results provide a model of coordinated interaction of TFs to explain the Doxorubicin, E2 and TNFα induced repression mechanisms.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/uso terapêutico , Estradiol/uso terapêutico , Fator de Necrose Tumoral alfa/uso terapêutico , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Estradiol/farmacologia , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Modelos Biológicos , Reprodutibilidade dos Testes , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia
19.
Urol Oncol ; 37(9): 578.e1-578.e10, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30948335

RESUMO

OBJECTIVES: To analyze p53 mutations and gene expression of p53, ∆40p53, and ∆133p53 isoforms in renal cell cancer (RCC) tissues and normal adjacent tissue (NAT) and to associate them to clinical features and outcome. PATIENTS AND METHODS: Forty-one randomly selected patients, with primary, previously untreated RCC, with complete clinicopathohistological data were analyzed. NAT samples were available for 37 cases. Expression of p53, ∆40p53 and ∆133p53 was determined using RT-qPCR. A functional yeast-based assay was performed to analyze p53 mutations. RESULTS: More than half (56.1%) of patients harbored functional p53 mutations, and they were significantly younger than those with wild type (WT) p53 (P = 0.032). Expression of p53, ∆40p53, and ∆133p53 was upregulated in mutant (MT) p53 RCC compared to WT p53 RCC tissues. However, there was no difference in expression of these isoforms between MT p53 RCC tissues and NAT. Expression of ∆133p53 was significantly downregulated in WT p53 tissues compared to NAT (P = 0.006). Patients that harbored functional p53 mutation had better overall survival (hazard ratio 4.32, 95% confidence interval 1.46-18.82, P = 0.006). Multivariate analysis demonstrated that tumor stage and p53 mutation might be used as independent prognostic marker for overall survival in RCC patients. CONCLUSIONS: Our findings support the specific events in the carcinogenesis of RCC. p53 isoforms can be differentially expressed depending on p53 mutational status.


Assuntos
Carcinoma de Células Renais/metabolismo , Neoplasias Renais/metabolismo , Proteína Supressora de Tumor p53/biossíntese , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Feminino , Humanos , Neoplasias Renais/genética , Masculino , Pessoa de Meia-Idade , Mutação , Prognóstico , Estudos Prospectivos , Isoformas de Proteínas , Proteína Supressora de Tumor p53/genética
20.
Sci Rep ; 9(1): 12470, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31462745

RESUMO

Unlike other tumours, TP53 is rarely mutated in melanoma; however, it fails to function as a tumour suppressor. We assume that its functions might be altered through interactions with several families of proteins, including p53/p73, NME and GLI. To elucidate the potential interplay among these families we analysed the expression profiles of aforementioned genes and proteins in a panel of melanoma cell lines, metastatic melanoma specimens and healthy corresponding tissue. Using qPCR a higher level of NME1 gene expression and lower levels of Δ40p53ß, ΔNp73, GLI1, GLI2 and PTCH1 were observed in tumour samples compared to healthy tissue. Protein expression of Δ133p53α, Δ160p53α and ΔNp73α isoforms, NME1 and NME2, and N'ΔGLI1, GLI1FL, GLI2ΔN isoforms was elevated in tumour tissue, whereas ∆Np73ß was downregulated. The results in melanoma cell lines, in general, support these findings. In addition, we correlated expression profiles with clinical features and outcome. Higher Δ133p53ß and p53α mRNA and both GLI1 mRNA and GLI3R protein expression had a negative impact on the overall survival. Shorter overall survival was also connected with lower p53ß and NME1 gene expression levels. In conclusion, all examined genes may have implications in melanoma development and functional inactivity of TP53.


Assuntos
Regulação Neoplásica da Expressão Gênica , Melanoma/metabolismo , Núcleosídeo-Difosfato Quinase/biossíntese , Proteína Tumoral p73/biossíntese , Proteína Supressora de Tumor p53/biossíntese , Linhagem Celular Tumoral , Intervalo Livre de Doença , Feminino , Humanos , Masculino , Melanoma/genética , Melanoma/mortalidade , Melanoma/patologia , Metástase Neoplásica , Núcleosídeo-Difosfato Quinase/genética , Taxa de Sobrevida , Proteína Tumoral p73/genética , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA