Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Elife ; 102021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33904395

RESUMO

Dendritic cells (DCs) regulate processes ranging from antitumor and antiviral immunity to host-microbe communication at mucosal surfaces. It remains difficult, however, to genetically manipulate human DCs, limiting our ability to probe how DCs elicit specific immune responses. Here, we develop a CRISPR-Cas9 genome editing method for human monocyte-derived DCs (moDCs) that mediates knockouts with a median efficiency of >94% across >300 genes. Using this method, we perform genetic screens in moDCs, identifying mechanisms by which DCs tune responses to lipopolysaccharides from the human microbiome. In addition, we reveal donor-specific responses to lipopolysaccharides, underscoring the importance of assessing immune phenotypes in donor-derived cells, and identify candidate genes that control this specificity, highlighting the potential of our method to pinpoint determinants of inter-individual variation in immunity. Our work sets the stage for a systematic dissection of the immune signaling at the host-microbiome interface and for targeted engineering of DCs for neoantigen vaccination.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Células Dendríticas/imunologia , Edição de Genes , Genômica , Imunidade Inata/genética , Bacteroides thetaiotaomicron/imunologia , Proteína 9 Associada à CRISPR/metabolismo , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Regulação da Expressão Gênica , Humanos , Imunidade Inata/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Fenótipo , Transdução de Sinais , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
2.
Mol Ther Methods Clin Dev ; 18: 98-118, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32995354

RESUMO

Different approaches are used in the production of recombinant adeno-associated virus (rAAV). The two leading approaches are transiently transfected human HEK293 cells and live baculovirus infection of Spodoptera frugiperda (Sf9) insect cells. Unexplained differences in vector performance have been seen clinically and preclinically. Thus, we performed a controlled comparative production analysis varying only the host cell species but maintaining all other parameters. We characterized differences with multiple analytical approaches: proteomic profiling by mass spectrometry, isoelectric focusing, cryo-EM (transmission electron cryomicroscopy), denaturation assays, genomic and epigenomic sequencing of packaged genomes, human cytokine profiling, and functional transduction assessments in vitro and in vivo, including in humanized liver mice. Using these approaches, we have made two major discoveries: (1) rAAV capsids have post-translational modifications (PTMs), including glycosylation, acetylation, phosphorylation, and methylation, and these differ between platforms; and (2) rAAV genomes are methylated during production, and these are also differentially deposited between platforms. Our data show that host cell protein impurities differ between platforms and can have their own PTMs, including potentially immunogenic N-linked glycans. Human-produced rAAVs are more potent than baculovirus-Sf9 vectors in various cell types in vitro (p < 0.05-0.0001), in various mouse tissues in vivo (p < 0.03-0.0001), and in human liver in vivo (p < 0.005). These differences may have clinical implications for rAAV receptor binding, trafficking, expression kinetics, expression durability, vector immunogenicity, as well as cost considerations.

3.
Nat Biotechnol ; 37(9): 1034-1037, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31359007

RESUMO

Understanding of repair outcomes after Cas9-induced DNA cleavage is still limited, especially in primary human cells. We sequence repair outcomes at 1,656 on-target genomic sites in primary human T cells and use these data to train a machine learning model, which we have called CRISPR Repair Outcome (SPROUT). SPROUT accurately predicts the length, probability and sequence of nucleotide insertions and deletions, and will facilitate design of SpCas9 guide RNAs in therapeutically important primary human cells.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , RNA Guia de Cinetoplastídeos/genética , Linfócitos T/fisiologia , Linhagem Celular , Regulação da Expressão Gênica , Genoma , Genômica , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA