RESUMO
Generation of a stable long-lived plasma cell (LLPC) population is the sine qua non of durable antibody responses after vaccination or infection. We studied 20 individuals with a prior coronavirus disease 2019 infection and characterized the antibody response using bone marrow aspiration and plasma samples. We noted deficient generation of spike-specific LLPCs in the bone marrow after severe acute respiratory syndrome coronavirus 2 infection. Furthermore, while the regression model explained 98% of the observed variance in anti-tetanus immunoglobulin G levels based on LLPC enzyme-linked immunospot assay, we were unable to fit the same model with anti-spike antibodies, again pointing to the lack of LLPC contribution to circulating anti-spike antibodies.
Assuntos
Anticorpos Antivirais , Medula Óssea , COVID-19 , Plasmócitos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , COVID-19/imunologia , Plasmócitos/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Anticorpos Antivirais/sangue , SARS-CoV-2/imunologia , Masculino , Pessoa de Meia-Idade , Feminino , Medula Óssea/virologia , Adulto , Imunoglobulina G/sangue , IdosoRESUMO
Analyzing the impact of the adaptive immune response during acute hepatitis B virus (HBV) infection is essential for understanding disease progression and control. Here we developed mathematical models of HBV infection which either lack terms for adaptive immune responses, or assume adaptive immune responses in the form of cytolytic immune killing, non-cytolytic immune cure, or non-cytolytic-mediated block of viral production. We validated the model that does not include immune responses against temporal serum hepatitis B DNA (sHBV) and temporal serum hepatitis B surface-antigen (HBsAg) experimental data from mice engrafted with human hepatocytes (HEP). Moreover, we validated the immune models against sHBV and HBsAg experimental data from mice engrafted with HEP and human immune system (HEP/HIS). As expected, the model that does not include adaptive immune responses matches the observed high sHBV and HBsAg concentrations in all HEP mice. By contrast, while all immune response models predict reduction in sHBV and HBsAg concentrations in HEP/HIS mice, the Akaike Information Criterion cannot discriminate between non-cytolytic cure (resulting in a class of cells refractory to reinfection) and antiviral block functions (of up to 99 % viral production 1-3 weeks following peak viral load). We can, however, reject cytolytic killing, as it can only match the sHBV and HBsAg data when we predict unrealistic levels of hepatocyte loss.
Assuntos
Vírus da Hepatite B , Hepatite B , Camundongos , Humanos , Animais , Vírus da Hepatite B/genética , Antígenos de Superfície da Hepatite B/genética , Conceitos Matemáticos , Modelos Biológicos , Antivirais/uso terapêuticoRESUMO
The relationship between transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the amount of virus present in the proximity of a susceptible host is not understood. Here, we developed a within-host and aerosol mathematical model and used it to determine the relationship between viral kinetics in the upper respiratory track, viral kinetics in the aerosols, and new transmissions in golden hamsters challenged with SARS-CoV-2. We determined that infectious virus shedding early in infection correlates with transmission events, shedding of infectious virus diminishes late in the infection, and high viral RNA levels late in the infection are a poor indicator of transmission. We further showed that viral infectiousness increases in a density dependent manner with viral RNA and that their relative ratio is time-dependent. Such information is useful for designing interventions.
Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Humanos , RNA Viral , Aerossóis e Gotículas Respiratórios , Eliminação de Partículas ViraisRESUMO
Hepatitis B virus infection is the cause of liver diseases such as cirrhosis and liver cancer. Understanding the host-virus mechanisms that mediate virus pathogenesis can help design better preventive measures for disease control. Mathematical models have been used alongside experimental data to provide insight into the role of immune responses during the acute and chronic hepatitis B infections as well as virus dynamics following administration of combined drug therapy. In this paper, we review several modeling studies on virus-host interactions during acute infection, the virus-host characteristics responsible for transition to chronic disease, and the efficacy and optimal control measures of drug therapy. We conclude by presenting our opinion on the future directions of the field.
Assuntos
Quimioterapia Combinada , Vírus da Hepatite B/fisiologia , Hepatite B/fisiopatologia , Imunidade , Modelos Imunológicos , Animais , Doença Crônica , Hepatite B/tratamento farmacológico , Interações Hospedeiro-Patógeno , Humanos , Controle de InfecçõesRESUMO
The relationship between the inoculum dose and the ability of the pathogen to invade the host is poorly understood. Experimental studies in non-human primates infected with different inoculum doses of hepatitis B virus have shown a non-monotonic relationship between dose magnitude and infection outcome, with high and low doses leading to 100% liver infection and intermediate doses leading to less than 0.1% liver infection, corresponding to CD4 T-cell priming. Since hepatitis B clearance is CD8 T-cell mediated, the question of whether the inoculum dose influences CD8 T-cell dynamics arises. To help answer this question, we developed a mathematical model of virus-host interaction following hepatitis B virus infection. Our model explains the experimental data well, and predicts that the inoculum dose affects both the timing of the CD8 T-cell expansion and the quality of its response, especially the non-cytotoxic function. We find that a low-dose challenge leads to slow CD8 T-cell expansion, weak non-cytotoxic functions, and virus persistence; high- and medium-dose challenges lead to fast CD8 T-cell expansion, strong cytotoxic and non-cytotoxic function, and virus clearance; while a super-low-dose challenge leads to delayed CD8 T-cell expansion, strong cytotoxic and non-cytotoxic function, and virus clearance. These results are useful for designing immune cell-based interventions.
Assuntos
Hepatite B , Animais , Linfócitos T CD8-Positivos , Vírus da Hepatite BRESUMO
Usutu virus is an emerging zoonotic flavivirus causing high avian mortality rates and occasional severe neurological disorders in humans. Several virus strains are co-circulating and the differences in their characteristics and avian pathogenesis levels are still unknown. In this study, we use within-host mathematical models to characterize the mechanisms responsible for virus expansion and clearance in juvenile chickens challenged with four Usutu virus strains. We find heterogeneity between the virus strains, with the time between cell infection and viral production varying between 16 h and 23 h, the infected cell lifespan varying between 48 min and 9.5 h, and the basic reproductive number R0 varying between 12.05 and 19.49. The strains with high basic reproductive number have short infected cell lifespan, indicative of immune responses. The virus strains with low basic reproductive number have lower viral peaks and longer lasting viremia, due to lower infection rates and high infected cell lifespan. We discuss how the host and virus heterogeneities may differently impact the public health threat presented by these virus strains.
Assuntos
Infecções por Flavivirus , Flavivirus , Animais , Número Básico de Reprodução , Galinhas , Infecções por Flavivirus/epidemiologia , Infecções por Flavivirus/veterináriaRESUMO
The size of primary challenge with lipopolysaccharide induces changes in the innate immune cells phenotype between pro-inflammatory and pro-tolerant states when facing a secondary lipopolysaccharide challenge. To determine the molecular mechanisms governing this differential response, we propose a mathematical model for the interaction between three proteins involved in the immune cell decision making: IRAK-1, PI3K, and RelB. The mutual inhibition of IRAK-1 and PI3K in the model leads to bistable dynamics. By using the levels of RelB as indicative of strength of the immune responses, we connect the size of different primary lipopolysaccharide doses to the differential phenotypical outcomes following a secondary challenge. We further predict under what circumstances the primary LPS dose does not influence the response to a secondary challenge. Our results can be used to guide treatments for patients with either autoimmune disease or compromised immune system.
Assuntos
Imunidade Inata , Modelos Imunológicos , Animais , Simulação por Computador , Humanos , Tolerância Imunológica , Quinases Associadas a Receptores de Interleucina-1/imunologia , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Conceitos Matemáticos , Fenótipo , Fosfatidilinositol 3-Quinases/imunologia , Fator de Transcrição RelB/imunologiaRESUMO
Dengue virus causes worldwide concern with nearly 100 million infected cases reported annually. The within-host dynamics differ between primary and secondary infections, where secondary infections with a different virus serotype typically last longer, produce higher viral loads, and induce more severe disease. We build upon the variable within-host virus dynamics during infections resulting in mild dengue fever and severe dengue hemorrhagic fever. We couple these within-host virus dynamics to a population-level model through a system of partial differential equations creating an immuno-epidemiological model. The resulting multiscale model examines the dynamics of between-host infections in the presence of two circulating virus strains that involves feedback from the within-host and between-hosts interactions, encompassing multiple scales. We analytically determine the relationship between the model parameters and the characteristics of the model's solutions, and find an analytical threshold under which infections persist in the population. Furthermore, we develop and implement a full numerical scheme for our immuno-epidemiological model, allowing the simulation of population dynamics under variable parameter conditions.
Assuntos
Vírus da Dengue , Modelos Biológicos , Dinâmica Populacional , Sorogrupo , Dengue Grave , Carga Viral , Vírus da Dengue/metabolismo , Vírus da Dengue/patogenicidade , Humanos , Dengue Grave/sangue , Dengue Grave/epidemiologiaRESUMO
Hepatitis B is a DNA virus that infects liver cells and can cause both acute and chronic disease. It is believed that both viral and host factors are responsible for determining whether the infection is cleared or becomes chronic. Here we investigate the mechanism of protection by developing a mathematical model of the antibody response following hepatitis B virus (HBV) infection. We fitted the model to data from seven infected adults identified during acute infection and determined the ability of the virus to escape neutralization through overproduction of non-infectious subviral particles, which have HBs proteins on their surface, but do not contain nucleocapsid protein and viral nucleic acids. We showed that viral clearance can be achieved for high anti-HBV antibody levels, as in vaccinated individuals, when: (1) the rate of synthesis of hepatitis B subviral particles is slow; (2) the rate of synthesis of hepatitis B subviral particles is high but either anti-HBV antibody production is fast, the antibody affinity is high, or the levels of pre-existent HBV-specific antibody at the time of infection are high, as could be attained by vaccination. We further showed that viral clearance can be achieved for low equilibrium anti-HBV antibody levels, as in unvaccinated individuals, when a strong cellular immune response controls early infection.
Assuntos
Anticorpos Anti-Hepatite B/imunologia , Vírus da Hepatite B/imunologia , Hepatite B/imunologia , Hepatite B/virologia , Interações Hospedeiro-Patógeno/imunologia , Modelos Imunológicos , Biologia Computacional/métodos , Humanos , Carga Viral/imunologiaRESUMO
Antibodies that bind viral surface proteins can limit the spread of the infection through neutralizing and non-neutralizing functions. During both acute and chronic Human Immunodeficiency Virus infection, antibody-virion immune complexes are formed, but fail to ensure protection. In this study, we develop a mathematical model of multivalent antibody binding and use it to determine the dynamical interactions that lead to immune complexes formation and the role of complexes with increased numbers of bound antibodies in the pathogenesis of the disease. We compare our predictions with published temporal virus and immune complex data from acute infected patients. Finally, we derive quantitative and qualitative conditions needed for antibody-induced protection.
Assuntos
Complexo Antígeno-Anticorpo/biossíntese , Infecções por HIV/imunologia , Modelos Imunológicos , Vacinas contra a AIDS/imunologia , Vacinas contra a AIDS/farmacologia , Doença Aguda , Doença Crônica , Anticorpos Anti-HIV/metabolismo , Antígenos HIV/metabolismo , Proteína gp41 do Envelope de HIV/imunologia , Proteína gp41 do Envelope de HIV/metabolismo , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , Humanos , Imunoglobulina G/metabolismo , Conceitos MatemáticosRESUMO
We develop a mathematical model for the interaction between two competing equine infectious anemia virus strains and neutralizing antibodies. We predict that elimination of one or both virus strains depends on the initial antibody levels, the strength of antibody mediated neutralization, and the persistence of antibody over time. We further show that the ability of a subdominant, neutralization resistant virus to dominate the infection transiently or permanently is dependent on the antibody-mediated neutralization effect. Finally, we determine conditions for persistence of both virus strains. We fit our models to virus titers from horses (foals) with severe combined immunodeficiency to estimate virus-host parameters and to validate analytical results.
Assuntos
Anemia Infecciosa Equina/virologia , Cavalos/virologia , Interações Hospedeiro-Patógeno , Vírus da Anemia Infecciosa Equina/fisiologia , Imunodeficiência Combinada Severa/veterinária , Imunodeficiência Combinada Severa/virologia , Animais , Simulação por Computador , Modelos Biológicos , Mutação/genética , Análise Numérica Assistida por Computador , RNA Viral/metabolismoRESUMO
In-host models have been essential for understanding the dynamics of virus infection inside an infected individual. When used together with biological data, they provide insight into viral life cycle, intracellular and cellular virus-host interactions, and the role, efficacy, and mode of action of therapeutics. In this review, we present the standard model of virus dynamics and highlight situations where added model complexity accounting for intracellular processes is needed. We present several examples from acute and chronic viral infections where such inclusion in explicit and implicit manner has led to improvement in parameter estimates, unification of conclusions, guidance for targeted therapeutics, and crossover among model systems. We also discuss trade-offs between model realism and predictive power and highlight the need of increased data collection at finer scale of resolution to better validate complex models.
RESUMO
Uncertainty in parameter estimates from fitting within-host models to empirical data limits the model's ability to uncover mechanisms of infection, disease progression, and to guide pharmaceutical interventions. Understanding the effect of model structure and data availability on model predictions is important for informing model development and experimental design. To address sources of uncertainty in parameter estimation, we use four mathematical models of influenza A infection with increased degrees of biological realism. We test the ability of each model to reveal its parameters in the presence of unlimited data by performing structural identifiability analyses. We then refine the results by predicting practical identifiability of parameters under daily influenza A virus titers alone or together with daily adaptive immune cell data. Using these approaches, we present insight into the sources of uncertainty in parameter estimation and provide guidelines for the types of model assumptions, optimal experimental design, and biological information needed for improved predictions.
RESUMO
Understanding the epidemiology of emerging pathogens, such as Usutu virus (USUV) infections, requires systems investigation at each scale involved in the host-virus transmission cycle, from individual bird infections, to bird-to-vector transmissions, and to USUV incidence in bird and vector populations. For new pathogens field data are sparse, and predictions can be aided by the use of laboratory-type inoculation and transmission experiments combined with dynamical mathematical modelling. In this study, we investigated the dynamics of two strains of USUV by constructing mathematical models for the within-host scale, bird-to-vector transmission scale and vector-borne epidemiological scale. We used individual within-host infectious virus data and per cent mosquito infection data to predict USUV incidence in birds and mosquitoes. We addressed the dependence of predictions on model structure, data uncertainty and experimental design. We found that uncertainty in predictions at one scale change predicted results at another scale. We proposed in silico experiments that showed that sampling every 12 hours ensures practical identifiability of the within-host scale model. At the same time, we showed that practical identifiability of the transmission scale functions can only be improved under unrealistically high sampling regimes. Instead, we proposed optimal experimental designs and suggested the types of experiments that can ensure identifiability at the transmission scale and, hence, induce robustness in predictions at the epidemiological scale.
RESUMO
Vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) results in transient antibody response against the spike protein. The individual immune status at the time of vaccination influences the response. Using mathematical models of antibody decay, we determined the dynamics of serum immunoglobulin G (IgG) and serum immunoglobulin A (IgA) over time. Data fitting to longitudinal IgG and IgA titers was used to quantify differences in antibody magnitude and antibody duration among infection-naïve and infection-positive vaccinees. We found that prior infections result in more durable serum IgG and serum IgA responses, with prior symptomatic infections resulting in the most durable serum IgG response and prior asymptomatic infections resulting in the most durable serum IgA response. These findings can guide vaccine boosting schedules.
Assuntos
Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Imunoglobulina A , Imunoglobulina G , SARS-CoV-2 , Humanos , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Imunoglobulina A/sangue , Imunoglobulina A/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Vacinação , Glicoproteína da Espícula de Coronavírus/imunologia , Modelos ImunológicosRESUMO
Aryl hydrocarbon receptor (AhR) responds to endogenous and exogenous ligands as a cytosolic receptor, transcription factor, and E3 ubiquitin ligase. Several studies support an anti-inflammatory effect of AhR activation. However, exposure to the AhR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during early stages of development results in an autoimmune phenotype and exacerbates lupus. The effects of TCDD on lupus in adults with pre-existing autoimmunity have not been described. We present novel evidence that AhR stimulation by TCDD alters T cell responses but fails to impact lupus-like disease using an adult mouse model. Interestingly, AhR antagonist CH223191 also changed T cell balance in our model. We next developed a conceptual framework for identifying cellular and molecular factors that contribute to physiological outcomes in lupus and created models that describe cytokine dynamics that were fed into a system of differential equations to predict the kinetics of T follicular helper (Tfh) and regulatory T (Treg) cell populations. The model predicted that Tfh cells expanded to larger values following TCDD exposure compared with vehicle and CH223191. Following the initial elevation, both Tfh and Treg cell populations continuously decayed over time. A function based on the ratio of predicted Treg/Tfh cells showed that Treg cells exceed Tfh cells in all groups, with TCDD and CH223191 showing lower Treg/Tfh cell ratios than the vehicle and that the ratio is relatively constant over time. We conclude that AhR ligands did not induce an anti-inflammatory response to attenuate autoimmunity in adult lupus mice. This study challenges the dogma that TCDD supports an immunosuppressive phenotype.
Assuntos
Dibenzodioxinas Policloradas , Pirazóis , Linfócitos T Reguladores , Animais , Camundongos , Compostos Azo , Dibenzodioxinas Policloradas/farmacologia , Anti-InflamatóriosRESUMO
BACKGROUND: T-cell receptor diversity correlates with immune competency and is of particular interest in patients undergoing immune reconstitution. Spectratyping generates data about T-cell receptor CDR3 length distribution for each BV gene but is technically complex. Flow cytometry can also be used to generate data about T-cell receptor BV gene usage, but its utility has not been compared to or tested in combination with spectratyping. RESULTS: Using flow cytometry and spectratype data, we have defined a divergence metric that quantifies the deviation from normal of T-cell receptor repertoire. We have shown that the sample size is a sensitive parameter in the predicted flow divergence values, but not in the spectratype divergence values. We have derived two ways to correct for the measurement bias using mathematical and statistical approaches and have predicted a lower bound in the number of lymphocytes needed when using the divergence as a substitute for diversity. CONCLUSIONS: Using both flow cytometry and spectratyping of T-cells, we have defined the divergence measure as an indirect measure of T-cell receptor diversity. We have shown the dependence of the divergence measure on the sample size before it can be used to make predictions regarding the diversity of the T-cell receptor repertoire.
Assuntos
Regiões Determinantes de Complementaridade/genética , Citometria de Fluxo/métodos , Reação em Cadeia da Polimerase/métodos , Receptores de Antígenos de Linfócitos T/metabolismo , Complexo CD3/metabolismo , Linfócitos T CD4-Positivos/imunologia , Intervalos de Confiança , Humanos , Tamanho da AmostraRESUMO
Wastewater surveillance has been widely used to track and estimate SARS-CoV-2 incidence. While both infectious and recovered individuals shed virus into wastewater, epidemiological inferences using wastewater often only consider the viral contribution from the former group. Yet, the persistent shedding in the latter group could confound wastewater-based epidemiological inference, especially during the late stage of an outbreak when the recovered population outnumbers the infectious population. To determine the impact of recovered individuals' viral shedding on the utility of wastewater surveillance, we develop a quantitative framework that incorporates population-level viral shedding dynamics, measured viral RNA in wastewater, and an epidemic dynamic model. We find that the viral shedding from the recovered population can become higher than the infectious population after the transmission peak, which leads to a decrease in the correlation between wastewater viral RNA and case report data. Furthermore, the inclusion of recovered individuals' viral shedding into the model predicts earlier transmission dynamics and slower decreasing trends in wastewater viral RNA. The prolonged viral shedding also induces a potential delay in the detection of new variants due to the time needed to generate enough new cases for a significant viral signal in an environment dominated by virus shed by the recovered population. This effect is most prominent toward the end of an outbreak and is greatly affected by both the recovered individuals' shedding rate and shedding duration. Our results suggest that the inclusion of viral shedding from non-infectious recovered individuals into wastewater surveillance research is important for precision epidemiology.
RESUMO
While antiretroviral drugs can drive HIV to undetectably low levels in the blood, eradication is hindered by the persistence of long-lived, latently infected memory CD4 T cells. Immune activation therapy aims to eliminate this latent reservoir by reactivating these memory cells, exposing them to removal by the immune system and the cytotoxic effects of active infection. In this paper, we develop a mathematical model that investigates the use of immune activation strategies while limiting virus and latent class rebound. Our model considers infection of two memory classes, central and transitional CD4 T cells and the role that general immune activation therapy has on their elimination. Further, we incorporate ways to control viral rebound by blocking activated cell proliferation through anti proliferation therapy. Using the model, we provide insight into the control of latent infection and subsequently into the long term control of HIV infection.
Assuntos
Fármacos Anti-HIV/uso terapêutico , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/virologia , Infecções por HIV/tratamento farmacológico , Modelos Biológicos , Carga Viral/efeitos dos fármacos , Latência Viral/efeitos dos fármacos , Terapia Antirretroviral de Alta Atividade/estatística & dados numéricos , Linfócitos T CD4-Positivos/imunologia , Infecções por HIV/imunologia , Humanos , Latência Viral/imunologia , Replicação Viral/efeitos dos fármacos , Replicação Viral/imunologiaRESUMO
Determining accurate estimates for the characteristics of the severe acute respiratory syndrome coronavirus 2 in the upper and lower respiratory tracts, by fitting mathematical models to data, is made difficult by the lack of measurements early in the infection. To determine the sensitivity of the parameter estimates to the noise in the data, we developed a novel two-patch within-host mathematical model that considered the infection of both respiratory tracts and assumed that the viral load in the lower respiratory tract decays in a density dependent manner and investigated its ability to match population level data. We proposed several approaches that can improve practical identifiability of parameters, including an optimal experimental approach, and found that availability of viral data early in the infection is of essence for improving the accuracy of the estimates. Our findings can be useful for designing interventions.