Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
J Cell Sci ; 133(3)2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-32041893

RESUMO

Mutations that activate the RAS oncoproteins are common in cancer. However, aberrant upregulation of RAS activity often occurs in the absence of activating mutations in the RAS genes due to defects in RAS regulators. It is now clear that loss of function of Ras GTPase-activating proteins (RasGAPs) is common in tumors, and germline mutations in certain RasGAP genes are responsible for some clinical syndromes. Although regulation of RAS is central to their activity, RasGAPs exhibit great diversity in their binding partners and therefore affect signaling by multiple mechanisms that are independent of RAS. The RASSF family of tumor suppressors are essential to RAS-induced apoptosis and senescence, and constitute a barrier to RAS-mediated transformation. Suppression of RASSF protein expression can also promote the development of excessive RAS signaling by uncoupling RAS from growth inhibitory pathways. Here, we will examine how these effectors of RAS contribute to tumor suppression, through both RAS-dependent and RAS-independent mechanisms.


Assuntos
Neoplasias , Proteínas Ativadoras de ras GTPase , Apoptose , Proteínas Ativadoras de GTPase , Humanos , Neoplasias/genética , Transdução de Sinais
2.
Nature ; 538(7626): 510-513, 2016 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-27698418

RESUMO

The appearance of people associated with the Lapita culture in the South Pacific around 3,000 years ago marked the beginning of the last major human dispersal to unpopulated lands. However, the relationship of these pioneers to the long-established Papuan people of the New Guinea region is unclear. Here we present genome-wide ancient DNA data from three individuals from Vanuatu (about 3,100-2,700 years before present) and one from Tonga (about 2,700-2,300 years before present), and analyse them with data from 778 present-day East Asians and Oceanians. Today, indigenous people of the South Pacific harbour a mixture of ancestry from Papuans and a population of East Asian origin that no longer exists in unmixed form, but is a match to the ancient individuals. Most analyses have interpreted the minimum of twenty-five per cent Papuan ancestry in the region today as evidence that the first humans to reach Remote Oceania, including Polynesia, were derived from population mixtures near New Guinea, before their further expansion into Remote Oceania. However, our finding that the ancient individuals had little to no Papuan ancestry implies that later human population movements spread Papuan ancestry through the South Pacific after the first peopling of the islands.


Assuntos
Povo Asiático/genética , Genoma Humano/genética , Genômica , Migração Humana/história , Havaiano Nativo ou Outro Ilhéu do Pacífico/genética , Filogenia , Feminino , Genética Populacional , História Antiga , Humanos , Masculino , Nova Guiné/etnologia , Polinésia/etnologia , Tonga , Vanuatu
3.
Proc Biol Sci ; 288(1955): 20211204, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34284627

RESUMO

Recently expanded estimates for when humans arrived on Madagascar (up to approximately 10 000 years ago) highlight questions about the causes of the island's relatively late megafaunal extinctions (approximately 2000-500 years ago). Introduced domesticated animals could have contributed to extinctions, but the arrival times and past diets of exotic animals are poorly known. To conduct the first explicit test of the potential for competition between introduced livestock and extinct endemic megafauna in southern and western Madagascar, we generated new radiocarbon and stable carbon and nitrogen isotope data from the bone collagen of introduced ungulates (zebu cattle, ovicaprids and bushpigs, n = 66) and endemic megafauna (pygmy hippopotamuses, giant tortoises and elephant birds, n = 68), and combined these data with existing data from endemic megafauna (n = 282, including giant lemurs). Radiocarbon dates confirm that introduced and endemic herbivores briefly overlapped chronologically in this region between 1000 and 800 calibrated years before present (cal BP). Moreover, stable isotope data suggest that goats, tortoises and hippos had broadly similar diets or exploited similar habitats. These data support the potential for both direct and indirect forms of competition between introduced and endemic herbivores. We argue that competition with introduced herbivores, mediated by opportunistic hunting by humans and exacerbated by environmental change, contributed to the late extinction of endemic megafauna on Madagascar.


Assuntos
Extinção Biológica , Lemur , Animais , Ecossistema , Fósseis , Madagáscar , Mamíferos
4.
J Cardiovasc Pharmacol ; 76(2): 189-196, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32769849

RESUMO

OBJECTIVE: The natural molecule α-lipoic acid has been shown to be partially cytoprotective through antioxidant and antiapoptotic mechanisms. To obtain an initial assessment of the safety and potential efficacy of a synthetic derivative, CMX-2043, in preventing ischemic complications of percutaneous coronary intervention (PCI) we conducted the Subjects Undergoing PCI and Perioperative Reperfusion Treatment (SUPPORT-1) trial, the first patient experience with this agent. METHODS AND RESULTS: SUPPORT-1 was a phase 2a, 6-center, international, placebo-controlled, randomized, double-blind trial. A total of 142 patients were randomized to receive a single intravenous bolus dose of drug or placebo administered 15-60 minutes before PCI. Cardiac biomarker assessments included serial measurements of creatine kinase myocardial band (CK-MB) at 6, 12, 18, and 24 hours after PCI and a single measurement of troponin T (TnT) at 24 hours. Peak concentrations of CK-MB and TnT were significantly reduced in the 2.4 mg/kg group compared with placebo (P = 0.05 and 0.03, respectively). No subject administered 2.4 mg/kg of CMX-2043 had an increase of CK-MB to ≥3X upper limit of normal versus 16% for placebo (P = 0.02); 16% of the 2.4-mg/kg dose group developed an elevation of TnT to ≥3X upper limit of normal versus 39% in the placebo group (P = 0.05). No drug-related serious adverse events were observed in any group. CONCLUSION: These data suggest that CMX-2043 may reduce PCI periprocedural myonecrosis and support further clinical evaluation of this novel agent for its potential cytoprotective effects.


Assuntos
Angioplastia Coronária com Balão , Fármacos Cardiovasculares/uso terapêutico , Doença da Artéria Coronariana/terapia , Dipeptídeos/uso terapêutico , Miócitos Cardíacos/efeitos dos fármacos , Ácido Tióctico/análogos & derivados , Idoso , Angioplastia Coronária com Balão/efeitos adversos , Biomarcadores/sangue , Fármacos Cardiovasculares/efeitos adversos , Fármacos Cardiovasculares/farmacocinética , Doença da Artéria Coronariana/diagnóstico por imagem , Creatina Quinase Forma MB/sangue , Dipeptídeos/efeitos adversos , Dipeptídeos/farmacocinética , Método Duplo-Cego , Feminino , Humanos , Índia , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Necrose , Estudos Prospectivos , Ácido Tióctico/efeitos adversos , Ácido Tióctico/farmacocinética , Ácido Tióctico/uso terapêutico , Fatores de Tempo , Resultado do Tratamento , Troponina T/sangue , Estados Unidos
5.
Semin Cell Dev Biol ; 58: 86-95, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27288568

RESUMO

There are six core RASSF family proteins that contain conserved Ras Association domains and may serve as Ras effectors. They lack intrinsic enzymatic activity and appear to function as scaffolding and localization molecules. While initially being associated with pro-apoptotic signaling pathways such as Bax and Hippo, it is now clear that they can also connect Ras to a surprisingly broad range of signaling pathways that control senescence, inflammation, autophagy, DNA repair, ubiquitination and protein acetylation. Moreover, they may be able to impact the activation status of pro-mitogenic Ras effector pathways, such as the Raf pathway. The frequent epigenetic inactivation of RASSF genes in human tumors disconnects Ras from pro-death signaling systems, enhancing Ras driven transformation and metastasis. The best characterized members are RASSF1A and RASSF5 (NORE1A).


Assuntos
Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo , Proteínas ras/metabolismo , Animais , Humanos , Modelos Biológicos
6.
Hepatology ; 65(5): 1462-1477, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28090674

RESUMO

Hepatitis C virus (HCV) infection is a common risk factor for the development of liver cancer. The molecular mechanisms underlying this effect are only partially understood. Here, we show that the HCV protein, nonstructural protein (NS) 5B, directly binds to the tumor suppressor, NORE1A (RASSF5), and promotes its proteosomal degradation. In addition, we show that NORE1A colocalizes to sites of HCV viral replication and suppresses the replication process. Thus, NORE1A has antiviral activity, which is specifically antagonized by NS5B. Moreover, the suppression of NORE1A protein levels correlated almost perfectly with elevation of Ras activity in primary human samples. Therefore, NORE1A inactivation by NS5B may be essential for maximal HCV replication and may make a major contribution to HCV-induced liver cancer by shifting Ras signaling away from prosenescent/proapoptotic signaling pathways. CONCLUSION: HCV uses NS5B to specifically suppress NORE1A, facilitating viral replication and elevated Ras signaling. (Hepatology 2017;65:1462-1477).


Assuntos
Hepacivirus/fisiologia , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose , Carcinoma Hepatocelular/virologia , Regulação para Baixo , Células HEK293 , Humanos , Fígado/metabolismo , Fígado/virologia , Neoplasias Hepáticas/virologia , Complexo de Endopeptidases do Proteassoma/metabolismo
7.
BMC Cancer ; 18(1): 421, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29653561

RESUMO

BACKGROUND: Dysregulation of microRNA (miRNA) expression is associated with hallmarks of aggressive tumor phenotypes, e.g., enhanced cell growth, proliferation, invasion, and anchorage independent growth in prostate cancer (PCa). METHODS: Serum-based miRNA profiling involved 15 men diagnosed with non-metastatic (stage I, III) and metastatic (stage IV) PCa and five age-matched disease-free men using miRNA arrays with select targets confirmed by quantitative real-time PCR (qRT-PCR). The effect of miR-186-5p inhibition or ectopic expression on cellular behavior of PCa cells (i.e., PC-3, MDA-PCa-2b, and LNCaP) involved the use bromodeoxyuridine (BrdU) incorporation, invasion, and colony formation assays. Assessment of the impact of miR-186-5p inhibition or overexpression on selected targets entailed microarray analysis, qRT-PCR, and/or western blots. Statistical evaluation used the modified t-test and ANOVA analysis. RESULTS: MiR-186-5p was upregulated in serum from PCa patients and metastatic PCa cell lines (i.e., PC-3, MDA-PCa-2b, LNCaP) compared to serum from disease-free individuals or a normal prostate epithelial cell line (RWPE1), respectively. Inhibition of miR-186-5p reduced cell proliferation, invasion, and anchorage-independent growth of PC-3 and/or MDA-PCa-2b PCa cells. AKAP12, a tumor suppressor target of miR-186-5p, was upregulated in PC-3 and MDA-PCa-2b cells transfected with a miR-186-5p inhibitor. Conversely, ectopic miR-186-5p expression in HEK 293 T cells decreased AKAP12 expression by 30%. Both pAKT and ß-catenin levels were down-regulated in miR-186-5p inhibited PCa cells. CONCLUSIONS: Our findings suggest miR-186-5p plays an oncogenic role in PCa. Inhibition of miR-186-5p reduced PCa cell proliferation and invasion as well as increased AKAP12 expression. Future studies should explore whether miR-186-5p may serve as a candidate prognostic indicator and a therapeutic target for the treatment of aggressive prostate cancer.


Assuntos
MicroRNAs/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , MicroRNA Circulante , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , MicroRNAs/sangue , Invasividade Neoplásica , Metástase Neoplásica , Estadiamento de Neoplasias , Neoplasias da Próstata/sangue , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Reprodutibilidade dos Testes , Transcriptoma , beta Catenina/genética
8.
J Biol Chem ; 291(6): 3114-23, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26677227

RESUMO

Mutations in the Ras oncogene are one of the most frequent events in human cancer. Although Ras regulates numerous growth-promoting pathways to drive transformation, it can paradoxically promote an irreversible cell cycle arrest known as oncogene-induced senescence. Although senescence has clearly been implicated as a major defense mechanism against tumorigenesis, the mechanisms by which Ras can promote such a senescent phenotype remain poorly defined. We have shown recently that the Ras death effector NORE1A plays a critical role in promoting Ras-induced senescence and connects Ras to the regulation of the p53 tumor suppressor. We now show that NORE1A also connects Ras to the regulation of a second major prosenescent tumor suppressor, the retinoblastoma (Rb) protein. We show that Ras induces the formation of a complex between NORE1A and the phosphatase PP1A, promoting the activation of the Rb tumor suppressor by dephosphorylation. Furthermore, suppression of Rb reduces NORE1A senescence activity. These results, together with our previous findings, suggest that NORE1A acts as a critical tumor suppressor node, linking Ras to both the p53 and the Rb pathways to drive senescence.


Assuntos
Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteína do Retinoblastoma/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas Reguladoras de Apoptose , Células COS , Senescência Celular/genética , Chlorocebus aethiops , Células HEK293 , Células Hep G2 , Humanos , Proteínas Monoméricas de Ligação ao GTP/genética , Fosforilação/genética , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteína do Retinoblastoma/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
9.
Proc Natl Acad Sci U S A ; 111(29): 10491-6, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-25002481

RESUMO

Tonga was unique in the prehistoric Pacific for developing a maritime state that integrated the archipelago under a centralized authority and for undertaking long-distance economic and political exchanges in the second millennium A.D. To establish the extent of Tonga's maritime polity, we geochemically analyzed stone tools excavated from the central places of the ruling paramounts, particularly lithic artifacts associated with stone-faced chiefly tombs. The lithic networks of the Tongan state focused on Samoa and Fiji, with one adze sourced to the Society Islands 2,500 km from Tongatapu. To test the hypothesis that nonlocal lithics were especially valued by Tongan elites and were an important source of political capital, we analyzed prestate lithics from Tongatapu and stone artifacts from Samoa. In the Tongan state, 66% of worked stone tools were long-distance imports, indicating that interarchipelago connections intensified with the development of the Tongan polity after A.D. 1200. In contrast, stone tools found in Samoa were from local sources, including tools associated with a monumental structure contemporary with the Tongan state. Network analysis of lithics entering the Tongan state and of the distribution of Samoan adzes in the Pacific identified a centralized polity and the products of specialized lithic workshops, respectively. These results indicate that a significant consequence of social complexity was the establishment of new types of specialized sites in distant geographic areas. Specialized sites were loci of long-distance interaction and formed important centers for the transmission of information, people, and materials in prehistoric Oceania.


Assuntos
Sedimentos Geológicos , Comportamento de Utilização de Ferramentas , Geografia , História Antiga , Humanos , Ilhas , Oceano Pacífico , Samoa , Tonga
10.
J Biol Chem ; 289(45): 31102-10, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25217643

RESUMO

Ras is the most frequently activated oncogene found in human cancer, but its mechanisms of action remain only partially understood. Ras activates multiple signaling pathways to promote transformation. However, Ras can also exhibit a potent ability to induce growth arrest and death. NORE1A (RASSF5) is a direct Ras effector that acts as a tumor suppressor by promoting apoptosis and cell cycle arrest. Expression of NORE1A is frequently lost in human tumors, and its mechanism of action remains unclear. Here we show that NORE1A forms a direct, Ras-regulated complex with ß-TrCP, the substrate recognition component of the SCF(ß-TrCP) ubiquitin ligase complex. This interaction allows Ras to stimulate the ubiquitin ligase activity of SCF(ß-TrCP) toward its target ß-catenin, resulting in degradation of ß-catenin by the 26 S proteasome. However, the action of Ras/NORE1A/ß-TrCP is substrate-specific because IκB, another substrate of SCF(ß-TrCP), is not sensitive to NORE1A-promoted degradation. We identify a completely new signaling mechanism for Ras that allows for the specific regulation of SCF(ß-TrCP) targets. We show that the NORE1A levels in a cell may dictate the effects of Ras on the Wnt/ß-catenin pathway. Moreover, because NORE1A expression is frequently impaired in tumors, we provide an explanation for the observation that ß-TrCP can act as a tumor suppressor or an oncogene in different cell systems.


Assuntos
Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas ras/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose , Linhagem Celular Tumoral , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Células HEK293 , Humanos , Neoplasias Pulmonares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Transdução de Sinais , Especificidade por Substrato , beta Catenina/metabolismo
11.
J Biol Chem ; 289(45): 31287-95, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25225292

RESUMO

The Ras association domain family protein 1A (RASSF1A) is arguably one of the most frequently inactivated tumor suppressors in human cancer. RASSF1A modulates apoptosis via the Hippo and Bax pathways but also modulates the cell cycle. In part, cell cycle regulation appears to be dependent upon the ability of RASSF1A to complex with microtubules and regulate their dynamics. Which property of RASSF1A, apoptosis induction or microtubule regulation, is responsible for its tumor suppressor function is not known. We have identified a short conserved motif that is essential for the binding of RASSF family proteins with microtubule-associated proteins. By making a single point mutation in the motif, we were able to generate a RASSF1A variant that retains wild-type apoptotic properties but completely loses the ability to bind microtubule-associated proteins and complex with microtubules. Comparison of this mutant to wild-type RASSF1A showed that, despite retaining its proapoptotic properties, the mutant was completely unable to induce cell cycle arrest or suppress the tumorigenic phenotype. Therefore, it appears that the cell cycle/microtubule effects of RASSF1A are key to its tumor suppressor function rather than its apoptotic effects.


Assuntos
Apoptose , Ciclo Celular , Proteínas Supressoras de Tumor/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Dados de Sequência Molecular , Mutação , Fenótipo , Mutação Puntual , Homologia de Sequência de Aminoácidos , Proteínas ras/metabolismo
12.
Langmuir ; 31(11): 3326-32, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25714501

RESUMO

Magnetic nanoparticle-supported lipid bilayers (SLBs) constructed around core-shell Fe3O4-SiO2 nanoparticles (SNPs) were prepared and evaluated as potential drug carriers. We describe how an oxime ether lipid can be mixed with SNPs to produce lipid-particle assemblies with highly positive ζ potential. To demonstrate the potential of the resultant cationic SLBs, the particles were loaded with either the anticancer drug doxorubicin or an amphiphilic analogue, prepared to facilitate integration into the supported lipid bilayer, and then examined in studies against MCF-7 breast cancer cells. The assemblies were rapidly internalized and exhibited higher toxicity than treatments with doxorubicin alone. The magnetic SLBs were also shown to increase the efficacy of unmodified doxorubicin.


Assuntos
Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Bicamadas Lipídicas/química , Nanopartículas de Magnetita/química , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacologia , Humanos , Células MCF-7
13.
Cancers (Basel) ; 15(22)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38001740

RESUMO

There is little argument that the K-RAS onco-protein is the most important single oncoprotein in human cancer [...].

14.
Cancers (Basel) ; 15(16)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37627161

RESUMO

BRCA1 is a tumor suppressor with a complex mode of action. Hereditary mutations in BRCA1 predispose carriers to breast cancer, and spontaneous breast cancers often exhibit defects in BRCA1 expression. However, haploinsufficiency or suppression of BRCA1 expression leads to defects in DNA repair, which can induce DNA damage responses, leading to senescence. Activating mutation or overexpression of the Her2 oncoprotein are also frequent drivers of breast cancer. Yet, over-activation of Her2, working through the RAS oncoprotein, can also induce senescence. It is thought that additional defects in the p53 and Rb tumor suppressor machinery must occur in such tumors to allow an escape from senescence, thus permitting tumor development. Although BRCA1 mutant breast cancers are usually Her2 negative, a significant percentage of Her2 positive tumors also lose their expression of BRCA1. Such Her2+/BRCA1- tumors might be expected to have a particularly high senescence barrier to overcome. An important RAS senescence effector is the protein NORE1A, which can modulate both p53 and Rb. It is an essential senescence effector of the RAS oncoprotein, and it is often downregulated in breast tumors by promotor methylation. Here we show that NORE1A forms a Her2/RAS regulated, endogenous complex with BRCA1 at sites of replication fork arrest. Suppression of NORE1A blocks senescence induction caused by BRCA1 inactivation and Her2 activation. Thus, NORE1A forms a tumor suppressor complex with BRCA1. Its frequent epigenetic inactivation may facilitate the transformation of Her2+/BRCA1- mediated breast cancer by suppressing senescence.

15.
J Biol Chem ; 286(21): 18483-91, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21489991

RESUMO

The RASSF1A tumor suppressor binds and activates proapoptotic MST kinases. The Salvador adaptor protein couples MST kinases to the LATS kinases to form the hippo pathway. Upon activation by RASSF1A, LATS1 phosphorylates the transcriptional regulator YAP, which binds to p73 and activates its proapoptotic effects. However, although serving as an adaptor for MST and LATS, Salvador can also bind RASSF1A. The functional role of the RASSF1A/Salvador interaction is unclear. Although Salvador is a novel tumor suppressor in Drosophila and mice, its role in human systems remains largely unknown. Here we show that Salvador promotes apoptosis in human cells and that Salvador inactivation deregulates the cell cycle and enhances the transformed phenotype. Moreover, we show that although the salvador gene is seldom mutated or epigenetically inactivated in human cancers, it is frequently down-regulated posttranscriptionally. Surprisingly, we also find that although RASSF1A requires the presence of Salvador for full apoptotic activity and to activate p73, this effect does not require a direct interaction of RASSF1A with MST kinases or the activation of the hippo pathway. Thus, we confirm a role for Salvador as a human tumor suppressor and RASSF1A effector and show that Salvador allows RASSF1A to modulate p73 independently of the hippo pathway.


Assuntos
Apoptose/fisiologia , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiologia , Transdução de Sinais/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila melanogaster , Células HEK293 , Humanos , Camundongos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação/fisiologia , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Tumoral p73 , Proteínas Supressoras de Tumor/genética
16.
Cancer Cell ; 4(5): 405-13, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14667507

RESUMO

By positional cloning, we identified two breakpoint-spanning genes in a familial clear cell renal cell carcinoma (CCRCC)-associated t(1;3)(q32.1;q13.3): LSAMP and NORE1 (RASSF1 homolog). Both genes are downregulated in 9 of 9 RCC cell lines. While the NORE1A promoter predominantly presents partial methylation in 6 of the cell lines and 17/53 (32%) primary tumors, the LSAMP promoter is completely methylated in 5 of 9 cell lines and in 14/53 (26%) sporadic and 4 familial CCRCCs. Expression of LSAMP and NORE1A proteins in CCRCC cell lines inhibited cell proliferation. These characteristics indicate that LSAMP and NORE1A may represent new candidate tumor suppressors for CCRCC.


Assuntos
Adenocarcinoma de Células Claras/genética , Carcinoma de Células Renais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Adenocarcinoma de Células Claras/metabolismo , Animais , Proteínas Reguladoras de Apoptose , Sequência de Bases , Carcinoma de Células Renais/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Divisão Celular/fisiologia , Células Cultivadas , Clonagem Molecular , Metilação de DNA , Proteínas Ligadas por GPI , Humanos , Dados de Sequência Molecular , Proteínas Monoméricas de Ligação ao GTP/genética
17.
BMJ Case Rep ; 14(1)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33500296

RESUMO

Vertebral osteomyelitis is a rare diagnosis and often delayed diagnosis in children. This is a case of a child presenting with fever, back pain and raised C reactive protein who was found to have a Staphylococcus aureus (S.aureus) bacteraemia. Initial imaging with CT, MRI of the spine and abdominal ultrasound failed to demonstrate a vertebral osteomyelitis or identify another source of the bacteraemia. Due to the high clinical suspicion of a spinal source of the infection, second-line investigations were arranged. A bone scan identified an area of increase metabolic activity in the 12th thoracic vertebrae (T12) and subsequently a diagnosis was confirmed with a focused MRI of T12. This serves as an opportunity to discuss the diagnostic difficulty presented by paediatric vertebral osteomyelitis and more generally the need for clinicians to pursue their clinical suspicion in the face of false negative results to make an accurate and timely diagnosis.


Assuntos
Dor nas Costas/diagnóstico por imagem , Bacteriemia/diagnóstico , Osteomielite/diagnóstico por imagem , Espondilite/diagnóstico por imagem , Infecções Estafilocócicas/diagnóstico , Vértebras Torácicas/diagnóstico por imagem , Adolescente , Dor nas Costas/complicações , Dor nas Costas/etiologia , Bacteriemia/complicações , Feminino , Febre/etiologia , Humanos , Imageamento por Ressonância Magnética , Osteomielite/complicações , Cintilografia , Espondilite/complicações , Staphylococcus aureus , Tomografia Computadorizada por Raios X , Ultrassonografia
18.
Methods Mol Biol ; 2262: 303-310, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33977485

RESUMO

RASSF1A is a Ras effector that promotes the anti-proliferative properties of Ras. It acts as a scaffold protein that regulates several pro-apoptotic signaling pathways, thereby linking Ras to their regulation. However, accumulating evidence suggests that RASSF1A functions as a regulator of other additional biological processes, such as DNA repair and transcription, thereby implicating Ras in the modulation of these biological processes. The mechanisms by which RASSF1A modulates these processes is not fully understood but likely involves interacting with other effectors associated with these functions and coordinating their activity. Thus, to fully understand how RASSF1A manifests its activity, it is critical to identify RASSF1A interacting partners.Unfortunately, the reagents available for the detection of RASSF1A are of poor quality and also exhibit low sensitivity. Here we describe an immunoprecipitation protocol, taking into consideration the limitations of currently available reagents, that can reliably detect the endogenous interaction between RASSF1A and its binding partners.


Assuntos
Proteínas de Transporte/metabolismo , Immunoblotting/métodos , Imunoprecipitação/métodos , Domínios e Motivos de Interação entre Proteínas , Proteínas Supressoras de Tumor/metabolismo , Humanos
19.
Sci Rep ; 11(1): 3981, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33597553

RESUMO

Kingdom of Tonga in Polynesia is one of the most obese nations where metabolic conditions, sedentary lifestyles, and poor quality diet are widespread. These factors can lead to poor musculoskeletal health. However, whether metabolic abnormalities such as osteoporosis occurred in archaeological populations of Tonga is unknown. We employed a microscopic investigation of femur samples to establish whether bone loss afflicted humans in this Pacific region approximately 3000 years ago. Histology, laser confocal microscopy, and synchrotron Fourier-transform infrared microspectroscopy were used to measure bone vascular canal densities, bone porosity, and carbonate and phosphate content of bone composition in eight samples extracted from adult Talasiu males and females dated to 2650 BP. Compared to males, samples from females had fewer vascular canals, lower carbonate and phosphate content, and higher bone porosity. Although both sexes showed evidence of trabecularised cortical bone, it was more widespread in females (35.5%) than males (15.8%). Our data suggest experiences of advanced bone resorption, possibly as a result of osteoporosis. This provides first evidence for microscopic bone loss in a sample of archaeological humans from a Pacific population widely afflicted by metabolic conditions today.


Assuntos
Biomarcadores/análise , Densidade Óssea/fisiologia , Carbonatos/análise , Fêmur/metabolismo , Osteoporose/metabolismo , Fosfatos/análise , Adulto , Idoso , Idoso de 80 Anos ou mais , Reabsorção Óssea/metabolismo , Criança , Pré-Escolar , Feminino , História Antiga , Humanos , Lactente , Masculino , Microscopia Confocal , Pessoa de Meia-Idade , Obesidade/metabolismo , Polinésia , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Síncrotrons
20.
Cancers (Basel) ; 12(12)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348649

RESUMO

Lung cancer is the leading cause of cancer-related death worldwide. Lung cancer is commonly driven by mutations in the RAS oncogenes, the most frequently activated oncogene family in human disease. RAS-induced tumorigenesis is inhibited by the tumor suppressor RASSF1A, which induces apoptosis in response to hyperactivation of RAS. RASSF1A expression is suppressed in cancer at high rates, primarily owing to promoter hypermethylation. Recent reports have shown that loss of RASSF1A expression uncouples RAS from apoptotic signaling in vivo, thereby enhancing tumor aggressiveness. Moreover, a concomitant upregulation of RAS mitogenic signaling upon RASSF1A loss has been observed, suggesting RASSF1A may directly regulate RAS activation. Here, we present the first mechanistic evidence for control of RAS activation by RASSF1A. We present a novel interaction between RASSF1A and the Ras GTPase Activating Protein (RasGAP) DAB2IP, an important negative regulator of RAS. Using shRNA-mediated knockdown and stable overexpression approaches, we demonstrate that RASSF1A upregulates DAB2IP protein levels in NSCLC cells. Suppression of RASSF1A and subsequent downregulation of DAB2IP enhances GTP loading onto RAS, thus increasing RAS mitogenic signaling in both mutant- and wildtype-RAS cells. Moreover, co-suppression of RASSF1A and DAB2IP significantly enhances in vitro and in vivo growth of wildtype-RAS cells. Tumors expressing wildtype RAS, therefore, may still suffer from hyperactive RAS signaling when RASSF1A is downregulated. This may render them susceptible to the targeted RAS inhibitors currently in development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA