Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nature ; 572(7770): 461-466, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31340216

RESUMO

Effective ocean management and the conservation of highly migratory species depend on resolving the overlap between animal movements and distributions, and fishing effort. However, this information is lacking at a global scale. Here we show, using a big-data approach that combines satellite-tracked movements of pelagic sharks and global fishing fleets, that 24% of the mean monthly space used by sharks falls under the footprint of pelagic longline fisheries. Space-use hotspots of commercially valuable sharks and of internationally protected species had the highest overlap with longlines (up to 76% and 64%, respectively), and were also associated with significant increases in fishing effort. We conclude that pelagic sharks have limited spatial refuge from current levels of fishing effort in marine areas beyond national jurisdictions (the high seas). Our results demonstrate an urgent need for conservation and management measures at high-seas hotspots of shark space use, and highlight the potential of simultaneous satellite surveillance of megafauna and fishers as a tool for near-real-time, dynamic management.


Assuntos
Migração Animal , Pesqueiros/estatística & dados numéricos , Mapeamento Geográfico , Oceanos e Mares , Tubarões/fisiologia , Análise Espaço-Temporal , Animais , Densidade Demográfica , Medição de Risco , Tubarões/classificação , Navios , Fatores de Tempo
2.
J Biol Chem ; 299(7): 104852, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37224963

RESUMO

The correct coupling of amino acids with transfer RNAs (tRNAs) is vital for translating genetic information into functional proteins. Errors during this process lead to mistranslation, where a codon is translated using the wrong amino acid. While unregulated and prolonged mistranslation is often toxic, growing evidence suggests that organisms, from bacteria to humans, can induce and use mistranslation as a mechanism to overcome unfavorable environmental conditions. Most known cases of mistranslation are caused by translation factors with poor substrate specificity or when substrate discrimination is sensitive to molecular changes such as mutations or posttranslational modifications. Here we report two novel families of tRNAs, encoded by bacteria from the Streptomyces and Kitasatospora genera, that adopted dual identities by integrating the anticodons AUU (for Asn) or AGU (for Thr) into the structure of a distinct proline tRNA. These tRNAs are typically encoded next to a full-length or truncated version of a distinct isoform of bacterial-type prolyl-tRNA synthetase. Using two protein reporters, we showed that these tRNAs translate asparagine and threonine codons with proline. Moreover, when expressed in Escherichia coli, the tRNAs cause varying growth defects due to global Asn-to-Pro and Thr-to-Pro mutations. Yet, proteome-wide substitutions of Asn with Pro induced by tRNA expression increased cell tolerance to the antibiotic carbenicillin, indicating that Pro mistranslation can be beneficial under certain conditions. Collectively, our results significantly expand the catalog of organisms known to possess dedicated mistranslation machinery and support the concept that mistranslation is a mechanism for cellular resiliency against environmental stress.


Assuntos
Código Genético , Biossíntese de Proteínas , RNA de Transferência , Humanos , Aminoácidos/metabolismo , Códon/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Prolina/metabolismo , Biossíntese de Proteínas/genética , Proteínas/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Treonina/metabolismo , Streptomyces/genética , Mutação , Proteoma
3.
Phytopathology ; : PHYTO09230347R, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38079373

RESUMO

Common scab is an economically costly soilborne disease of potato endemic in many potato-growing regions. The disease is caused by species of Streptomyces bacteria that produce the phytotoxin thaxtomin A. The primary disease management tool available to growers is planting resistant cultivars, but no cultivar is fully resistant to common scab, and partially resistant cultivars are often not the preferred choice of growers because of agronomic or market considerations. Therefore, growers would benefit from knowledge of the presence and severity of common scab infestations in field soils to make informed planting decisions. We implemented a quantitative PCR diagnostic assay to enable field detection and quantification of all strains of Streptomyces that cause common scab in the United States through amplification of thaxtomin A biosynthetic genes. Greenhouse trials confirmed that pathogen abundance was highly correlated with disease severity for five distinct phytopathogenic Streptomyces species, although the degree of disease severity was dependent on the pathogen species. Correlations between the abundance of the thaxtomin biosynthetic genes from field soil with disease on tubers at field sites across four U.S. states and across 2 years were not as strong as correlations observed in greenhouse assays. We also developed an effective droplet digital PCR diagnostic assay that also has potential for field quantification of thaxtomin biosynthetic genes. Further improvement of the PCR assays and added modeling of other environmental factors that impact disease outcome, such as soil composition, can aid growers in making informed planting decisions.

4.
J Exp Bot ; 74(12): 3700-3713, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-36959729

RESUMO

Anthracnose is a widespread plant disease caused by various species of the fungal pathogen Colletotrichum. In solanaceous plants such as tomato (Solanum lycopersicum), Colletotrichum infections exhibit a quiescent, asymptomatic state in developing fruit, followed by a transition to necrotrophic infections in ripe fruit. Through analysis of fruit tissue extracts of 95L368, a tomato breeding line that yields fruit with enhanced anthracnose resistance, we identified a role for steroidal glycoalkaloids (SGAs) in anthracnose resistance. The SGA α-tomatine and several of its derivatives accumulated at higher levels, in comparison with fruit of the susceptible tomato cultivar US28, and 95L368 fruit extracts displayed fungistatic activity against Colletotrichum. Correspondingly, ripe and unripe 95L368 fruit displayed enhanced expression of glycoalkaloid metabolic enzyme (GAME) genes, which encode key enzymes in SGA biosynthesis. Metabolomics analysis incorporating recombinant inbred lines generated from 95L368 and US28 yielded strong positive correlations between anthracnose resistance and accumulation of α-tomatine and several derivatives. Lastly, transient silencing of expression of the GAME genes GAME31 and GAME5 in anthracnose-susceptible tomato fruit yielded enhancements to anthracnose resistance. Together, our data support a role for SGAs in anthracnose defense in tomato, with a distinct SGA metabolomic profile conferring resistance to virulent Colletotrichum infections in ripe fruit.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Melhoramento Vegetal , Metabolômica , Frutas/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-35085064

RESUMO

Fourteen strains of Streptomyces isolated from scab lesions on potato are described as members of a novel species based on genetic distance, morphological observation and biochemical analyses. Morphological and biochemical characteristics of these strains are distinct from other described phytopathogenic species. Strain NE06-02DT has white aerial mycelium and grey, cylindrical, smooth spores on rectus-flexibilis spore chains. Members of this species group can utilize most of the International Streptomyces Project sugars, utilize melibiose and trehalose, produce melanin, grow on 6-7 % NaCl and pH 5-5.5 media, and are susceptible to oleandomycin (100 µg ml-1), streptomycin (20 µg ml-1) and penicillin G (30 µg ml-1). Though the 16S rRNA gene sequences from several members of this novel species are identical to the Streptomyces bottropensis 16S rRNA gene sequence, whole-genome average nucleotide identity and multi-locus sequence analysis confirm that the strains are members of a novel species. Strains belonging to this novel species have been isolated from the United States, Egypt and China with the earliest known members being isolated in 1961 from common scab lesions of potato in both California, USA, and Maine, USA. The name Streptomyces caniscabiei sp. nov. is proposed for strain NE06-02DT (=DSM111602T=ATCC TSD-236T) and the other members of this novel species group.


Assuntos
Filogenia , Doenças das Plantas/microbiologia , Solanum tuberosum , Streptomyces , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solanum tuberosum/microbiologia , Streptomyces/classificação , Streptomyces/isolamento & purificação
6.
Int J Syst Evol Microbiol ; 72(11)2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36322614

RESUMO

Streptomyces strain NRRL B-2795T (DSM 112329T=NRRL B-2795T) is described as the type strain of Streptomyces griseiscabiei sp. nov. using whole-genome average nucleotide identity and multilocus sequence analyses in addition to phenotypic characterization of carbon source utilization, spore chain morphology, melanin production, salt tolerance, pH tolerance, plant pathogenicity and antibiotic resistance. This strain was previously classified as Streptomyces scabiei but suggested as a potential novel species. A second Streptomyces strain, NRRL B-16521, previously named Streptomyces scabiei, and also previously suggested as a potential novel species, is assigned to Streptomyces acidiscabies based on whole-genome average nucleotide identity. Morphological and biochemical characterizations also support this designation for NRRL B-16521. Both Streptomyces sp. strain NRRL B-2795T and NRRL B-16521 cause common scab on multiple cultivars of potato.


Assuntos
Ácidos Graxos , Streptomyces , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Filogenia , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Composição de Bases , Ácidos Graxos/química , Streptomyces/genética , Nucleotídeos
9.
Phytopathology ; 112(11): 2288-2295, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35694886

RESUMO

Several species of Streptomyces cause common scab, a major disease of potato, primarily through the phytotoxic effects of the phytotoxin thaxtomin A. Several phytopathogenic Streptomyces species have also been implicated as the causative agents of scab diseases of taproot crops including beet, carrot, radish, parsnip, and turnip. But the molecular mechanisms employed by Streptomyces to infect these crops is unknown. In this work, we tested the hypothesis that thaxtomin A biosynthesis is also necessary for Streptomyces-caused scab of beet, carrot, radish, and turnip. Thaxtomin A induced plant stunting and cell death of all four of these species. Streptomyces mutants in which the transcriptional regulator of thaxtomin A biosynthesis is disrupted were nonvirulent on all four crops, and complementation of the transcriptional regulator rescued thaxtomin A biosynthesis and plant pathogenicity to wild-type levels. These results demonstrate that thaxtomin A is the primary virulence determinant of scab disease of these other crops.


Assuntos
Beta vulgaris , Daucus carota , Raphanus , Solanum tuberosum , Streptomyces , Virulência , Doenças das Plantas , Streptomyces/genética , Fatores de Virulência
10.
Mol Plant Microbe Interact ; 34(1): 39-48, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33030393

RESUMO

The genus Streptomyces includes several phytopathogenic species that cause common scab, a devastating disease of tuber and root crops, in particular potato. The diversity of species that cause common scab is unknown. Likewise, the genomic context necessary for bacteria to incite common scab symptom development is not fully characterized. Here, we phenotyped and sequenced the genomes of five strains from a poorly studied Streptomyces lineage. These strains form a new species-level group. When genome sequences within just these five strains are compared, there are no polymorphisms of loci implicated in virulence. Each genome contains the pathogenicity island that encodes for the production of thaxtomin A, a phytotoxin necessary for common scab. Yet, not all sequenced strains produced thaxtomin A. Strains varied from nonpathogenic to highly virulent on two hosts. Unexpectedly, one strain that produced thaxtomin A and was pathogenic on radish was not aggressively pathogenic on potato. Therefore, while thaxtomin A biosynthetic genes and production of thaxtomin A are necessary, they are not sufficient for causing common scab of potato. Additionally, results show that even within a species-level group of Streptomyces strains, there can be aggressively pathogenic and nonpathogenic strains despite conservation of virulence genes.


Assuntos
Produtos Agrícolas , Doenças das Plantas , Streptomyces , Virulência , Produtos Agrícolas/microbiologia , Genoma Bacteriano/genética , Ilhas Genômicas/genética , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Tubérculos/microbiologia , Solanum tuberosum/microbiologia , Streptomyces/classificação , Streptomyces/genética , Streptomyces/patogenicidade , Virulência/genética
11.
Phytopathology ; 109(9): 1544-1554, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31066348

RESUMO

Common scab of potato is a superficial tuber disease caused by Streptomyces species that produce the phytotoxin thaxtomin. Because common scab development is highly dependent on the effects of this single toxin, the current operating paradigm in common scab pathology is that a potato cultivar resistant to one strain of the common scab pathogen is resistant to all strains. However, cultivar resistance to common scab disease identified in one breeding program is often not durable when tested in other potato breeding programs across the United States. We infected 55 potato cultivar populations with three distinct species of the common scab pathogen and identified cultivars that were resistant or susceptible to all three species and cultivars that had widely varying resistance dependent on the pathogen species. Overall lower virulence was associated with the strain that produces the least thaxtomin. This result showcases several cultivars of potato that are expected to be resistant to the majority of common scab populations but also highlights that many potato cultivars are resistant to only specific species of the pathogen. These results demonstrate that extension specialists and growers must consider their local population of the common scab pathogen when selecting which cultivars to plant for common scab resistance.


Assuntos
Solanum tuberosum , Streptomyces , Doenças das Plantas/microbiologia , Tubérculos/microbiologia , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/microbiologia , Streptomyces/fisiologia , Virulência
12.
Proc Natl Acad Sci U S A ; 113(45): E7010-E7019, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27791104

RESUMO

Horizontal gene transfer (HGT) is the transfer of genetic material across species boundaries and has been a driving force in prokaryotic evolution. HGT involving eukaryotes appears to be much less frequent, and the functional implications of HGT in eukaryotes are poorly understood. We test the hypothesis that parasitic plants, because of their intimate feeding contacts with host plant tissues, are especially prone to horizontal gene acquisition. We sought evidence of HGTs in transcriptomes of three parasitic members of Orobanchaceae, a plant family containing species spanning the full spectrum of parasitic capabilities, plus the free-living Lindenbergia Following initial phylogenetic detection and an extensive validation procedure, 52 high-confidence horizontal transfer events were detected, often from lineages of known host plants and with an increasing number of HGT events in species with the greatest parasitic dependence. Analyses of intron sequences in putative donor and recipient lineages provide evidence for integration of genomic fragments far more often than retro-processed RNA sequences. Purifying selection predominates in functionally transferred sequences, with a small fraction of adaptively evolving sites. HGT-acquired genes are preferentially expressed in the haustorium-the organ of parasitic plants-and are strongly biased in predicted gene functions, suggesting that expression products of horizontally acquired genes are contributing to the unique adaptive feeding structure of parasitic plants.

13.
Mol Biol Evol ; 32(3): 767-90, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25534030

RESUMO

The origin of novel traits is recognized as an important process underlying many major evolutionary radiations. We studied the genetic basis for the evolution of haustoria, the novel feeding organs of parasitic flowering plants, using comparative transcriptome sequencing in three species of Orobanchaceae. Around 180 genes are upregulated during haustorial development following host attachment in at least two species, and these are enriched in proteases, cell wall modifying enzymes, and extracellular secretion proteins. Additionally, about 100 shared genes are upregulated in response to haustorium inducing factors prior to host attachment. Collectively, we refer to these newly identified genes as putative "parasitism genes." Most of these parasitism genes are derived from gene duplications in a common ancestor of Orobanchaceae and Mimulus guttatus, a related nonparasitic plant. Additionally, the signature of relaxed purifying selection and/or adaptive evolution at specific sites was detected in many haustorial genes, and may play an important role in parasite evolution. Comparative analysis of gene expression patterns in parasitic and nonparasitic angiosperms suggests that parasitism genes are derived primarily from root and floral tissues, but with some genes co-opted from other tissues. Gene duplication, often taking place in a nonparasitic ancestor of Orobanchaceae, followed by regulatory neofunctionalization, was an important process in the origin of parasitic haustoria.


Assuntos
Duplicação Gênica/genética , Orobanchaceae/genética , Transcriptoma/genética , Análise por Conglomerados , Evolução Molecular , Perfilação da Expressão Gênica , Genes de Plantas/genética , Mimulus/genética , Mimulus/fisiologia , Orobanchaceae/fisiologia
14.
Proc Biol Sci ; 283(1834)2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27412274

RESUMO

Marine protected areas (MPAs) are commonly employed to protect ecosystems from threats like overfishing. Ideally, MPA design should incorporate movement data from multiple target species to ensure sufficient habitat is protected. We used long-term acoustic telemetry and network analysis to determine the fine-scale space use of five shark and one turtle species at a remote atoll in the Seychelles, Indian Ocean, and evaluate the efficacy of a proposed MPA. Results revealed strong, species-specific habitat use in both sharks and turtles, with corresponding variation in MPA use. Defining the MPA's boundary from the edge of the reef flat at low tide instead of the beach at high tide (the current best in Seychelles) significantly increased the MPA's coverage of predator movements by an average of 34%. Informed by these results, the larger MPA was adopted by the Seychelles government, demonstrating how telemetry data can improve shark spatial conservation by affecting policy directly.


Assuntos
Conservação dos Recursos Naturais/métodos , Recifes de Corais , Tubarões , Telemetria , Tartarugas , Animais , Oceano Índico
15.
Phytopathology ; 105(5): 597-607, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25710204

RESUMO

Phylogeographic studies inform about routes of pathogen dissemination and are instrumental for improving import/export controls. Genomes of 17 isolates of the bacterial wilt and potato brown rot pathogen Ralstonia solanacearum race 3 biovar 2 (R3bv2), a Select Agent in the United States, were thus analyzed to get insight into the phylogeography of this pathogen. Thirteen of fourteen isolates from Europe, Africa, and Asia were found to belong to a single clonal lineage while isolates from South America were genetically diverse and tended to carry ancestral alleles at the analyzed genomic loci consistent with a South American origin of R3bv2. The R3bv2 isolates share a core repertoire of 31 type III-secreted effector genes representing excellent candidates to be targeted with resistance genes in breeding programs to develop durable disease resistance. Toward this goal, 27 R3bv2 effectors were tested in eggplant, tomato, pepper, tobacco, and lettuce for induction of a hypersensitive-like response indicative of recognition by cognate resistance receptors. Fifteen effectors, eight of them core effectors, triggered a response in one or more plant species. These genotypes may harbor resistance genes that could be identified and mapped, cloned, and expressed in tomato or potato, for which sources of genetic resistance to R3bv2 are extremely limited.


Assuntos
Genômica , Doenças das Plantas/microbiologia , Ralstonia solanacearum/genética , Solanum tuberosum/microbiologia , África , Ásia , Capsicum/imunologia , Capsicum/microbiologia , Resistência à Doença , Europa (Continente) , Variação Genética , Lactuca/imunologia , Lactuca/microbiologia , Solanum lycopersicum/imunologia , Solanum lycopersicum/microbiologia , Filogeografia , Doenças das Plantas/imunologia , Ralstonia solanacearum/patogenicidade , Solanum melongena/genética , Solanum melongena/imunologia , Solanum tuberosum/imunologia , América do Sul , Virulência
16.
PLoS Pathog ; 7(8): e1002130, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21901088

RESUMO

Recently, genome sequencing of many isolates of genetically monomorphic bacterial human pathogens has given new insights into pathogen microevolution and phylogeography. Here, we report a genome-based micro-evolutionary study of a bacterial plant pathogen, Pseudomonas syringae pv. tomato. Only 267 mutations were identified between five sequenced isolates in 3,543,009 nt of analyzed genome sequence, which suggests a recent evolutionary origin of this pathogen. Further analysis with genome-derived markers of 89 world-wide isolates showed that several genotypes exist in North America and in Europe indicating frequent pathogen movement between these world regions. Genome-derived markers and molecular analyses of key pathogen loci important for virulence and motility both suggest ongoing adaptation to the tomato host. A mutational hotspot was found in the type III-secreted effector gene hopM1. These mutations abolish the cell death triggering activity of the full-length protein indicating strong selection for loss of function of this effector, which was previously considered a virulence factor. Two non-synonymous mutations in the flagellin-encoding gene fliC allowed identifying a new microbe associated molecular pattern (MAMP) in a region distinct from the known MAMP flg22. Interestingly, the ancestral allele of this MAMP induces a stronger tomato immune response than the derived alleles. The ancestral allele has largely disappeared from today's Pto populations suggesting that flagellin-triggered immunity limits pathogen fitness even in highly virulent pathogens. An additional non-synonymous mutation was identified in flg22 in South American isolates. Therefore, MAMPs are more variable than expected differing even between otherwise almost identical isolates of the same pathogen strain.


Assuntos
Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Pseudomonas syringae/genética , Pseudomonas syringae/patogenicidade , Solanum lycopersicum/microbiologia , Fatores de Virulência/genética , Alelos , Primers do DNA , Europa (Continente) , Flagelina/genética , Flagelina/metabolismo , Regulação da Expressão Gênica de Plantas , Loci Gênicos , Marcadores Genéticos , Mutação , América do Norte , Filogeografia , Imunidade Vegetal , Folhas de Planta , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
17.
New Phytol ; 200(3): 847-860, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23865782

RESUMO

The bacterial flagellin (FliC) epitopes flg22 and flgII-28 are microbe-associated molecular patterns (MAMPs). Although flg22 is recognized by many plant species via the pattern recognition receptor FLS2, neither the flgII-28 receptor nor the extent of flgII-28 recognition by different plant families is known. Here, we tested the significance of flgII-28 as a MAMP and the importance of allelic diversity in flg22 and flgII-28 in plant-pathogen interactions using purified peptides and a Pseudomonas syringae ∆fliC mutant complemented with different fliC alleles. The plant genotype and allelic diversity in flg22 and flgII-28 were found to significantly affect the plant immune response, but not bacterial motility. The recognition of flgII-28 is restricted to a number of solanaceous species. Although the flgII-28 peptide does not trigger any immune response in Arabidopsis, mutations in both flg22 and flgII-28 have FLS2-dependent effects on virulence. However, the expression of a tomato allele of FLS2 does not confer to Nicotiana benthamiana the ability to detect flgII-28, and tomato plants silenced for FLS2 are not altered in flgII-28 recognition. Therefore, MAMP diversification is an effective pathogen virulence strategy, and flgII-28 appears to be perceived by an as yet unidentified receptor in the Solanaceae, although it has an FLS2-dependent virulence effect in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/microbiologia , Flagelina/genética , Genótipo , Imunidade Vegetal/genética , Proteínas Quinases/metabolismo , Pseudomonas syringae/patogenicidade , Solanaceae/microbiologia , Alelos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiologia , Mutação , Doenças das Plantas/genética , Proteínas Quinases/genética , Pseudomonas syringae/genética , Pseudomonas syringae/fisiologia , Solanaceae/genética , Solanaceae/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/microbiologia
18.
Microb Genom ; 9(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37930748

RESUMO

Mobile genetic elements can innovate bacteria with new traits. In plant pathogenic Streptomyces, frequent and recent acquisition of integrative and conjugative or mobilizable genetic elements is predicted to lead to the emergence of new lineages that gained the capacity to synthesize Thaxtomin, a phytotoxin neccesary for induction of common scab disease on tuber and root crops. Here, we identified components of the Streptomyces-potato pathosystem implicated in virulence and investigated them as a nested and interacting system to reevaluate evolutionary models. We sequenced and analysed genomes of 166 strains isolated from over six decades of sampling primarily from field-grown potatoes. Virulence genes were associated to multiple subtypes of genetic elements differing in mechanisms of transmission and evolutionary histories. Evidence is consistent with few ancient acquisition events followed by recurrent loss or swaps of elements carrying Thaxtomin A-associated genes. Subtypes of another genetic element implicated in virulence are more distributed across Streptomyces. However, neither the subtype classification of genetic elements containing virulence genes nor taxonomic identity was predictive of pathogenicity on potato. Last, findings suggested that phytopathogenic strains are generally endemic to potato fields and some lineages were established by historical spread and further dispersed by few recent transmission events. Results from a hierarchical and system-wide characterization refine our understanding by revealing multiple mechanisms that gene and bacterial dispersion have had on shaping the evolution of a Gram-positive pathogen in agricultural settings.


Assuntos
Produtos Agrícolas , Streptomyces , Virulência/genética , Fenótipo , Streptomyces/genética , Sequências Repetitivas Dispersas
19.
New Phytol ; 193(1): 58-66, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22053875

RESUMO

• Plant immunity is activated by sensing either conserved microbial signatures, called pathogen/microbe-associated molecular patterns (P/MAMPs), or specific effectors secreted by pathogens. However, it is not known why most microbes are nonpathogenic in most plant species. • Nonhost resistance (NHR) consists of multiple layers of innate immunity and protects plants from the vast majority of potentially pathogenic microbes. Effector-triggered immunity (ETI) has been implicated in race-specific disease resistance. However, the role of ETI in NHR is unclear. • Pseudomonas syringae pv. tomato (Pto) T1 is pathogenic in tomato (Solanum lycopersicum) yet nonpathogenic in Arabidopsis. Here, we show that, in addition to the type III secretion system (T3SS)-dependent effector (T3SE) avrRpt2, a second T3SE of Pto T1, hopAS1, triggers ETI in nonhost Arabidopsis. • hopAS1 is broadly present in P. syringae strains, contributes to virulence in tomato, and is quantitatively required for Arabidopsis NHR to Pto T1. Strikingly, all tested P. syringae strains that are pathogenic in Arabidopsis carry truncated hopAS1 variants of forms, demonstrating that HopAS1-triggered immunity plays an important role in Arabidopsis NHR to a broad-range of P. syringae strains.


Assuntos
Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Bactérias/imunologia , Resistência à Doença/imunologia , Interações Hospedeiro-Patógeno/imunologia , Pseudomonas syringae/imunologia , Alelos , Proteínas de Bactérias/genética , Solanum lycopersicum/microbiologia , Mutação/genética , Imunidade Vegetal/imunologia , Pseudomonas syringae/patogenicidade , Virulência/imunologia
20.
Front Plant Sci ; 13: 851538, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401646

RESUMO

Early blight, caused by the fungus Alternaria solani, is one of the most economically important diseases of potatoes worldwide. We previously identified a tetraploid potato clone, B0692-4, which is resistant to early blight. To dissect the genetic basis of early blight resistance in this clone, a full-sib tetraploid potato population including 241 progenies was derived from a cross between B0692-4 and a susceptible cultivar, Harley Blackwell, in this study. The population was evaluated for foliage resistance against early blight in field trials in Pennsylvania in 2018 and 2019 and relative area under the disease progress curve (rAUDPC) was determined. The distribution of rAUDPC ranged from 0.016 to 0.679 in 2018, and from 0.017 to 0.554 in 2019. Broad sense heritability for resistance, as measured as rAUDPC, was estimated as 0.66-0.80. The population was also evaluated for foliar maturity in field trials in Maine in 2018 and 2020. A moderate negative correlation between rAUDPC and foliar maturity was detected in both years. A genetic linkage map covering a length of 1469.34 cM with 9124 SNP markers was used for mapping quantitative trait loci (QTL) for rAUDPC and foliar maturity. In 2018, three QTLs for early blight were detected; two of them on chromosome 5 overlapped with QTLs for maturity, and one of them on chromosome 7 was independent of maturity QTL. In 2019, six QTLs for early blight were detected; two QTLs on chromosome 5 overlapped with QTLs for maturity, and the other four QTLs did not overlap with QTLs for maturity. The identification of these QTLs provides new insight into the genetic basis of early blight resistance and may serve as sources for marker-assisted selection for early blight resistance breeding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA