Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 291(44): 23237-23247, 2016 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-27646003

RESUMO

The thymus, an organ responsible for T cell development, is one of the more stress-sensitive tissues in the body. Stress, in the form of infections, radiation exposure, and steroids, impairs thymic epithelial cell (TEC) functions and induces the programmed cell death of immature thymocytes. MicroRNAs are small noncoding RNAs involved in tissue repair and homeostasis, with several supporting T cell development. We report that miR-205, an epithelial-specific miR, maintains thymopoiesis following inflammatory perturbations. Thus, the activation of diverse pattern recognition receptors in mice causes a more severe thymic hypoplasia and delayed T cell recovery when miR-205 is conditionally ablated in TECs. Gene expression comparisons in the TECs with/without miR-205 revealed a significant differential regulation of chemokine/chemokine receptor pathways, antigen processing components, and changes in the Wnt signaling system. This was partly a consequence of reduced expression of the transcriptional regulator of epithelial cell function, Forkhead Box N1 (Foxn1), and its two regulated targets, stem cell factor and ccl25, following stress. miR-205 mimics supplemented into miR-205-deficient fetal thymic organ cultures restored Foxn1 expression along with ccl25 and stem cell factor A number of putative targets of miR-205 were up-regulated in TECs lacking miR-205, consistent with an important role for this miR in supporting T cell development in response to stress.


Assuntos
Diferenciação Celular , Quimiocinas CC/metabolismo , Fatores de Transcrição Forkhead/genética , MicroRNAs/metabolismo , Fator de Células-Tronco/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo , Animais , Células Cultivadas , Quimiocinas CC/genética , Feminino , Fatores de Transcrição Forkhead/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Fator de Células-Tronco/genética , Timócitos/citologia , Timócitos/metabolismo , Timo/citologia , Timo/crescimento & desenvolvimento , Timo/metabolismo
2.
J Clin Invest ; 132(22)2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36136514

RESUMO

22q11.2 deletion syndrome (22q11.2DS) is the most common human chromosomal microdeletion, causing developmentally linked congenital malformations, thymic hypoplasia, hypoparathyroidism, and/or cardiac defects. Thymic hypoplasia leads to T cell lymphopenia, which most often results in mild SCID. Despite decades of research, the molecular underpinnings leading to thymic hypoplasia in 22q11.2DS remain unknown. Comparison of embryonic thymuses from mouse models of 22q11.2DS (Tbx1neo2/neo2) revealed proportions of mesenchymal, epithelial, and hematopoietic cell types similar to those of control thymuses. Yet, the small thymuses were growth restricted in fetal organ cultures. Replacement of Tbx1neo2/neo2 thymic mesenchymal cells with normal ones restored tissue growth. Comparative single-cell RNA-Seq of embryonic thymuses uncovered 17 distinct cell subsets, with transcriptome differences predominant in the 5 mesenchymal subsets from the Tbx1neo2/neo2 cell line. The transcripts affected included those for extracellular matrix proteins, consistent with the increased collagen deposition we observed in the small thymuses. Attenuating collagen cross-links with minoxidil restored thymic tissue expansion for hypoplastic lobes. In colony-forming assays, the Tbx1neo2/neo2-derived mesenchymal cells had reduced expansion potential, in contrast to the normal growth of thymic epithelial cells. These findings suggest that mesenchymal cells were causal to the small embryonic thymuses in the 22q11.2DS mouse models, which was correctable by substitution with normal mesenchyme.


Assuntos
Síndrome de DiGeorge , Humanos , Animais , Camundongos , Síndrome de DiGeorge/genética , Síndrome de DiGeorge/terapia , Modelos Animais de Doenças , Camundongos SCID , Timo
3.
Dev Cell ; 49(4): 618-631.e5, 2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-30982661

RESUMO

MicroRNAs (miRNAs) are processed from primary miRNA transcripts (pri-miRNAs), many of which are annotated as long noncoding RNAs (lncRNAs). We assessed whether MIR205HG, the host gene for miR-205, has independent functions as an lncRNA. Comparing mice with targeted deletions of MIR205HG and miR-205 revealed a functional role for the lncRNA in the anterior pituitary. Mice lacking MIR205HG had a temporal reduction in Pit1, growth hormone, and prolactin. This was mediated, in part, through the ability of this lncRNA to bind and regulate the transcriptional activity of Pit1 in conjunction with Zbtb20. Knockdown of MIR205HG in lactotropes decreased the expression of Pit1, Zbtb20, prolactin, and growth hormone, while its overexpression enhanced the levels of these transcripts. The effects of MIR205HG on the pituitary were independent of miR-205. The data support a role for MIR205HG as an lncRNA that regulates growth hormone and prolactin production in the anterior pituitary.


Assuntos
Hormônio do Crescimento/biossíntese , MicroRNAs/metabolismo , Adeno-Hipófise/metabolismo , Prolactina/biossíntese , RNA Longo não Codificante/metabolismo , Animais , Hormônio do Crescimento/genética , Hormônio do Crescimento/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Prolactina/genética , Prolactina/metabolismo , RNA Longo não Codificante/genética , Ratos , Fator de Transcrição Pit-1/genética , Fator de Transcrição Pit-1/metabolismo , Transcriptoma
5.
PLoS One ; 11(1): e0147758, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26812085

RESUMO

A critical and understudied property of endothelial cells is their ability to form lumens and tube networks. Although considerable information has been obtained concerning these issues, including the role of Cdc42 and Rac1 and their effectors such as Pak2, Pak4, Par6b, and co-regulators such as integrins, MT1-MMP and Par3; many key questions remain that are necessary to elucidate molecular and signaling requirements for this fundamental process. In this work, we identify new small GTPase regulators of EC tubulogenesis including k-Ras, Rac2 and Rap1b that act in conjunction with Cdc42 as well as the key downstream effectors, IQGAP1, MRCKß, beta-Pix, GIT1, and Rasip1 (which can assemble into multiprotein complexes with key regulators including α2ß1 integrin and MT1-MMP). In addition, we identify the negative regulators, Arhgap31 (by inactivating Cdc42 and Rac) and Rasa1 (by inactivating k-Ras) and the positive regulator, Arhgap29 (by inactivating RhoA) which play a major functional role during the EC tubulogenic process. Human EC siRNA suppression or mouse knockout of Rasip1 leads to identical phenotypes where ECs form extensive cord networks, but cannot generate lumens or tubes. Essential roles for these molecules during EC tubulogenesis include; i) establishment of asymmetric EC cytoskeletal polarization (subapical distribution of acetylated tubulin and basal membrane distribution of F-actin); and ii) directed membrane trafficking of pinocytic vacuoles or other intracellular vesicles along acetylated tubulin tracks to the developing apical membrane surface. Cdc42 co-localizes subapically with acetylated tubulin, while Rac1 and k-Ras strongly label vacuole/ vesicle membranes which accumulate and fuse together in a polarized, perinuclear manner. We observe polarized apical membrane and subapical accumulation of key GTPases and effectors regulating EC lumen formation including Cdc42, Rac1, Rac2, k-Ras, Rap1b, activated c-Raf and Rasip1 to control EC tube network assembly. Overall, this work defines novel key regulators and their functional roles during human EC tubulogenesis.


Assuntos
Citoesqueleto/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Fosfoproteínas/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteína p120 Ativadora de GTPase/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rap de Ligação ao GTP/metabolismo , Proteínas ras/metabolismo , Animais , Linhagem Celular , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Feminino , Proteínas Ativadoras de GTPase/antagonistas & inibidores , Proteínas Ativadoras de GTPase/genética , Humanos , Masculino , Camundongos , Microscopia de Fluorescência , Ésteres de Forbol/farmacologia , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/genética , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Tubulina (Proteína)/metabolismo , Vacúolos/metabolismo , Proteína cdc42 de Ligação ao GTP/antagonistas & inibidores , Proteína cdc42 de Ligação ao GTP/genética , Proteína p120 Ativadora de GTPase/antagonistas & inibidores , Proteína p120 Ativadora de GTPase/genética , Proteínas rac de Ligação ao GTP/antagonistas & inibidores , Proteínas rac de Ligação ao GTP/genética , Proteínas rap de Ligação ao GTP/antagonistas & inibidores , Proteínas rap de Ligação ao GTP/genética , Proteínas ras/antagonistas & inibidores , Proteínas ras/genética , Proteína RAC2 de Ligação ao GTP
6.
Dev Cell ; 31(2): 140-2, 2014 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-25373773

RESUMO

Establishment of cell polarity is important for epithelial lumen formation, and the molecular mechanisms directing this process are only partially understood. In this issue of Developmental Cell, Bryant et al. (2014) show that disassembly, membrane translocation, and reassembly of podocalyxin complexes controls epithelial cell polarization and lumen formation in 3D matrices.


Assuntos
Polaridade Celular/fisiologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Morfogênese , Organogênese , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA